

Appendix F:
Testing System

Appendix F ii

TABLE OF CONTENTS

1 Background...1-1

2 Preliminary Requirements ...2-1

2.1 Introduction .. 2-1

2.2 Development Requirements.. 2-1

2.3 Applications.. 2-2
2.3.1 On-Board Unit (OBU) Test Application .. 2-2
2.3.2 OBU Test and RSU Test Common Requirements ... 2-4

3 Application Message Specification ..3-1

3.1 Introduction .. 3-1
3.1.1 Scope .. 3-1
3.1.2 Application Interfaces .. 3-1
3.1.3 GPS Receiver Interface .. 3-2
3.1.4 Vehicle Bus Interface ... 3-2
3.1.5 Traffic Signal Interface .. 3-2
3.1.6 WAVE Radio Module Interface... 3-2

3.2 Message Definitions ... 3-3
3.2.1 Common Message Header.. 3-3
3.2.2 OBU V2V Safety Message... 3-4
3.2.3 RSU Traffic Signal Message.. 3-6

4 Testing System Specification and Architecture ..4-1

4.1 Introduction .. 4-1
4.1.1 Scope .. 4-1

4.2 Architecture .. 4-1
4.2.1 Overview .. 4-1
4.2.2 External Interfaces.. 4-1
4.2.3 User Interface ... 4-2
4.2.4 Test Control.. 4-4

Appendix F iii

4.3 Class Descriptions .. 4-6
4.3.1 Class Descriptions .. 4-7

4.4 Data .. 4-25
4.4.1 Structures.. 4-25
4.4.2 Global Variables... 4-27

4.5 Design Goals and Constraints... 4-29
4.5.1 Design Methodology .. 4-29
4.5.2 MFC, Standard Library Usage ... 4-29
4.5.3 ANSI Compliance .. 4-29
4.5.4 Memory Management .. 4-29
4.5.5 Naming Conventions.. 4-29

4.6 Modifications and Enhancements... 4-29
4.6.1 Changing Over the Air Formats ... 4-29
4.6.2 Changing Data Logging ... 4-30
4.6.3 Changing Test Types.. 4-30
4.6.4 Changing T9App Configuration Loading / Saving .. 4-30
4.6.5 Changing CAN messages... 4-31

5 Validation Results ..5-1

5.1 Introduction .. 5-1
5.1.1 Scope .. 5-1

5.2 Test Configurations .. 5-1
5.2.1 WAVE Radio Module Network Connection.. 5-1
5.2.2 Test Setups ... 5-1
5.2.3 Initialization ... 5-3
5.2.4 Software Builds .. 5-6

5.3 GUI Parameter Tests... 5-6
5.3.1 WRM Configuration Screen... 5-6
5.3.2 Comm Parameters Screen .. 5-9
5.3.3 Test Options Screen ... 5-14
5.3.4 Traffic Signal Information Screen.. 5-17
5.3.5 Test Display Screen.. 5-20
5.3.6 GUI Configuration Recording, Persistence.. 5-25

Appendix F iv

5.4 Interface Tests... 5-26
5.4.1 GPS Receiver Interface Tests... 5-26
5.4.2 Vehicle Bus Interface Tests.. 5-30
5.4.3 Traffic Signal Interface Tests ... 5-39

5.5 Requirement/Test Cross Reference Matrix... 5-45
5.5.1 Task 9 Software Requirement Verification.. 5-45
5.5.2 Common Message Header Verification ... 5-48
5.5.3 OBU Message Verification .. 5-48
5.5.4 RSU Message Verification... 5-49

6 Appendix ...6-1

6.1 Terms, Acronyms, and Abbreviations .. 6-1

6.2 References .. 6-3

6.3 Task 9 Device CAN Input Messages.. 6-3
6.3.1 Vehicle Velocity Message.. 6-3
6.3.2 Vehicle Acceleration Message ... 6-4
6.3.3 Vehicle Devices Message... 6-5

6.4 Traffic Signal Interface... 6-5
6.4.1 Initial Request/Response State ... 6-6
6.4.2 Periodic Request/Response State ... 6-6

6.5 Preliminary Vehicle-to-Vehicle Common Message Set ... 6-9

6.6 Task 9 Application Users’ Guide ... 6-11
6.6.1 Introduction .. 6-11
6.6.2 Scope .. 6-11
6.6.3 Setup Procedures .. 6-11
6.6.4 Operating Instructions .. 6-14
6.6.5 Troubleshooting ... 6-25

Appendix F v

TABLE OF FIGURES

Figure 2-1. Task 9 Device in the OBU Test Application Configuration...................................... 2-2
Figure 2-2. Task 9 Device in the RSU Test Application Configuration 2-3
Figure 3-1. OBU Interfaces .. 3-1
Figure 3-2. RSU Interfaces... 3-2
Figure 3-3. Common Message Header Format .. 3-3
Figure 3-4. OBU V2V Safety Message Format ... 3-5
Figure 3-5. RSU Traffic Signal Message Format (Part 1 of 2) .. 3-7
Figure 3-6. RSU Traffic Signal Message Format (Part 2 of 2) .. 3-8
Figure 4-1. T9App Architecture ... 4-1
Figure 4-2. T9App External Interfaces... 4-2
Figure 4-3. Configuration Dialogs Screen Shots.. 4-3
Figure 4-4. Test Display Dialog Screen Shot ... 4-3
Figure 4-5. T9App Test Execution Architecture (UML Diagram)... 4-5
Figure 5-1. Generic Test Setup.. 5-2
Figure 5-2. OBU Test Setup.. 5-2
Figure 5-3. RSU Test Setup ... 5-3
Figure 6-1. Common Setup ... 6-11
Figure 6-2. OBU Setup... 6-13
Figure 6-3. RSU Setup .. 6-14
Figure 6-4. T9App Main Screen Layout .. 6-15
Figure 6-5. WRM Configuration Screen Layout.. 6-15
Figure 6-6. Comm Parameters Screen Layout.. 6-16
Figure 6-7. Test Options Screen Layout... 6-18
Figure 6-8. Traffic Signal Information Screen Layout... 6-19
Figure 6-9. Location Information Screen Dialog Box.. 6-19
Figure 6-10. Test Display Screen Layout... 6-20
Figure 6-11. Sample OBU Logfile ... 6-23
Figure 6-12. Excel Text Import Wizard ... 6-24
Figure 6-13. Worksheet Selection .. 6-24
Figure 6-14. Imported Logfile.. 6-25

Appendix F vi

Figure 6-15. COM Port Conflict Error Message .. 6-26
Figure 6-16. GPS Port Initialization Error Message... 6-26
Figure 6-17. Traffic Signal Port Initialization Error Message.. 6-27
Figure 6-18. CAN Bus Initialization Error Message Box .. 6-27

TABLE OF TABLES

Table 2-1. Definitions Used Throughout the Document .. 2-1
Table 3-1. Common Message Header Field Descriptions.. 3-4
Table 3-2. OBU V2V Safety Message Discrete Field Definitions... 3-6
Table 3-3. RSU Traffic Signal Message Discrete Field Definitions .. 3-9
Table 4-1. T9App Dialog Class Summary ... 4-4
Table 4-2. T9App Class Summary ... 4-6
Table 4-3. CCanControl Methods and Attributes... 4-8
Table 4-4. CCanMsg Methods and Attributes.. 4-8
Table 4-5. CCommParams Methods and Attributes... 4-9
Table 4-6. CDeviceDatabase Methods and Attributes ... 4-10
Table 4-7. CGpsControl Methods and Attributes... 4-11
Table 4-8. CGpsPosition Methods and Attributes.. 4-11
Table 4-9. CLocationInfo Methods and Attributes .. 4-12
Table 4-10. CSerialPort Class Methods and Attributes.. 4-15
Table 4-11. CSignalControl Methods and Attributes... 4-15
Table 4-12. CSignalControl State Machine Events.. 4-16
Table 4-13. CSignalInfo Methods and Attributes .. 4-17
Table 4-14. CTestLog Methods and Attributes .. 4-18
Table 4-15. CTestStatusDialog Methods and Attributes.. 4-18
Table 4-16. CTestStatusDialog Processes .. 4-19
Table 4-17. CVehicleInfo Methods and Attributes .. 4-20
Table 4-18. CWaveDeviceInfo Methods and Attributes ... 4-22
Table 4-19. CWrmControl Methods and Attributes.. 4-23
Table 4-20. CWrmMsg Methods and Attributes ... 4-24
Table 4-21. GPS Location Structure ... 4-25

Appendix F vii

Table 4-22. Test Header Structure... 4-25
Table 4-23. Stopping Location Structure .. 4-26
Table 4-24. Common Message Structure .. 4-26
Table 4-25. OBU VTV Message .. 4-26
Table 4-26. RSU TS Message ... 4-27
Table 4-27. T9 App Globals.. 4-27
Table 4-28. WAVE API Globals... 4-28
Table 4-29. PCAN USB Globals... 4-28
Table 5-1. OBU Initialization Procedure... 5-3
Table 5-2. RSU Initialization Procedure .. 5-4
Table 5-3. Communication Parameters Initial Values... 5-4
Table 5-4. Test Options Initial Values .. 5-5
Table 5-5. Traffic Signal Parameters Initial Values ... 5-5
Table 5-6. WRM and T9App Software Versions .. 5-6
Table 5-7. WRM Configuration Screen Results.. 5-7
Table 5-8. WRM Configuration Data Elements .. 5-9
Table 5-9. Comm Parameters Screen Low Parameter Values... 5-10
Table 5-10. Comm Parameters Screen Low Parameter Results .. 5-10
Table 5-11. Comm Parameters Screen Data Elements.. 5-11
Table 5-12. Comm Parameters Screen Mid Parameter Values ... 5-11
Table 5-13. Comm Parameters Screen Mid Parameter Results... 5-12
Table 5-14. Comm Parameters Screen High Parameter Values .. 5-13
Table 5-15. Comm Parameters Screen High Parameter Results ... 5-13
Table 5-18. Test Options Screen Parameter Values .. 5-14
Table 5-19. Test Options Screen Case 1 Results... 5-15
Table 5-20. Test Options Data Elements... 5-16
Table 5-21. Test Options Screen Case 2 Results... 5-16
Table 5-22. Test Options Screen Case 3 Results... 5-17
Table 5-23. Traffic Signal Information Screen Results... 5-18
Table 5-24. Traffic Signal Message Data Elements .. 5-19
Table 5-25. Distance, Heading Test GPS Data ... 5-21
Table 5-26. Distance, Heading Test Parameter Values ... 5-21
Table 5-27. Distance, Heading Test Results.. 5-21

Appendix F viii

Table 5-28. RSU – RSU Bearing Test GPS Data.. 5-22
Table 5-29. RSU – RSU Bearing Test Parameter Values ... 5-22
Table 5-30. RSU – RSU Bearing Test Results... 5-23
Table 5-31. OBU – OBU Relative Heading Test Parameters .. 5-24
Table 5-32. OBU – OBU Relative Heading Test Results .. 5-25
Table 5-33. GUI Configuration Recording, Persistence Results.. 5-26
Table 5-34. Common Message Header GPS Data Test Results.. 5-27
Table 5-35. Common Message Header GPS Data Elements... 5-27
Table 5-36. OBU GPS Interface Test Results .. 5-28
Table 5-37. OBU V2V Safety Message GPS Data Elements... 5-28
Table 5-38. RSU GPS Interface Test Results... 5-30
Table 5-39. RSU Traffic Signal Message GPS Data Elements .. 5-30
Table 5-40. Vehicle Velocity Settings (Low-Value).. 5-31
Table 5-41. Vehicle Acceleration Settings (Low-Value) ... 5-31
Table 5-42. Vehicle Devices Settings (Low-Value)... 5-32
Table 5-43. Vehicle Interface Low-Value Test Results ... 5-32
Table 5-44. OBU V2V Safety Message Vehicle Data Elements.. 5-33
Table 5-45. Vehicle Velocity Settings (Mid-Value) .. 5-34
Table 5-46. Vehicle Acceleration Settings (Mid-Value).. 5-34
Table 5-47. Vehicle Devices Settings (Mid-Value) ... 5-34
Table 5-48. Vehicle Interface Mid-Value Test Results .. 5-35
Table 5-49. Vehicle Velocity Settings (High-Value) ... 5-35
Table 5-50. Vehicle Acceleration Settings (High-Value)... 5-36
Table 5-51. Vehicle Devices Settings (High-Value) .. 5-36
Table 5-52. Vehicle Interface High-Value Test Results... 5-36
Table 5-53. Vehicle Devices Settings .. 5-37
Table 5-54. Vehicle Interface Test Results .. 5-37
Table 5-56. Vehicle Devices Settings .. 5-38
Table 5-57. Vehicle Interface Test Results .. 5-38
Table 5-58. Vehicle Devices Settings .. 5-38
Table 5-60. Vehicle Interface Test Results .. 5-38
Table 5-61. Traffic Signal Long Initial Response, Fast Polling Results 5-39
Table 5-62. Short Initial Response, Slow Polling Results.. 5-40

Appendix F ix

Table 5-63. Traffic Signal Active Phase 1 and 5 Parameters ... 5-41
Table 5-64. Traffic Signal Active Phase 1 and 5 Results ... 5-41
Table 5-65. RSU Traffic Signal Message Data Elements .. 5-41
Table 5-66. Traffic Signal Active Phase 2 and 6 Parameters ... 5-42
Table 5-67. Traffic Signal Active Phase 2 and 6 Results ... 5-42
Table 5-69. Traffic Signal Active Phase 3 and 7 Parameters ... 5-43
Table 5-70. Traffic Signal Active Phase 3 and 7 Results ... 5-43
Table 5-71. Traffic Signal Active Phase 4 and 8 Parameters ... 5-44
Table 5-72. Traffic Signal Active Phase 4 and 8 Results ... 5-44
Table 5-73. Task 9 Software Requirement Cross Reference.. 5-45
Table 5-74. Common Message Header Field Verification... 5-48
Table 5-75. OBU Message Verification ... 5-48
Table 5-76. RSU Message Verification.. 5-49
Table 6-1. Comm Parameters Screen Field Definitions ... 6-16
Table 6-2. Test Option Screen Field Definitions.. 6-18
Table 6-3. Traffic Signal Information Screen Field Definitions .. 6-19
Table 6-4. Test Display Screen Field Definitions .. 6-21
Table 6-5. Logfile Record Types.. 6-22

Appendix F 1-1

1 Background
The WAVE radio modules developed under Task 6D include the capability for hardware
and software operation at 5.9 GHz, closely compliant with available lower layer DSRC
standards. The WAVE radio modules also include a well-documented Applications
Programming Interface (API) that includes access to many of the functions available in
the DSRC lower layers. The development of a common computing platform was
necessary to support future VSCC testing and evaluation of functionalities being
specified in the upper layer standards. This common computing platform was also
required for simulating transmissions from traffic signal controllers, as well as interfacing
with these controllers to transmit traffic signal data in real time.

The next generation testing system developed under Task 9 interfaces with automotive
network systems, traffic signal controllers and research computers. As well, the system
supports enhanced data acquisition capabilities, both for recording pertinent test-related
information, and for acquiring and recording automotive network data pertinent to the
testing in Task 10. Due to the wide range of anticipated testing uses, the next generation
test system was designed to function as a portable system with flexible system interfaces
to plug into relevant automotive networks, traffic signal controllers and research
computers, as required.

The preliminary testing of communications functionalities necessary for the development
of prototype vehicle safety applications depended upon access to proprietary in-vehicle
networks and systems, as well as access to the DSRC communications capabilities. The
API on the WAVE radio modules was also designed to be available for direct access by
the proprietary on-board computing systems of VSCC member companies. Development
of software on these proprietary systems to support this data integration and functionality
testing represented an additional development activity that was necessary to enable Task
10 testing and evaluation.

The contents of Chapters 3-5 and portions of Chapter 6 of this report were prepared by
the identified contractor, Denso LA Laboratories, in conjunction with the VSCC. The
materials prepared by Denso comprised a number of separate specifications and reports.
These were integrated into Chapters 3-6 of this report with minor editorial and formatting
revisions.

This project was completed successfully within the necessary short time constraints
imposed by the Task 10 testing requirements. The Task 9 software was delivered in time,
and in sufficient working order, to support the final phases of the Task 10 testing,
including real time vehicle bus data transfer between vehicles of different manufacturers,
as well as real time traffic controller data transmission from intersection locations to
vehicles in motion.

Appendix F 2-1

2 Preliminary Requirements
The preliminary requirements presented in this chapter represent the starting point for the
development of the Task 9 software, thus are represented in the future tense. These
preliminary requirements were subsequently refined under an iterative process between
Denso and the VSCC in order to complete the detailed specifications described later in
this report.

2.1 Introduction
The Task 9 test software and Task 9 device will be used to support testing for VSC task
10. The task 10 testing will involve running scenario specific tests involving two or more
vehicles and collecting data for analysis of each test.

The primary roles of the Task 9 device shall be to:

• Interface between a vehicle communication bus or a roadside device and
the Wave Radio Module (WRM) so that the WRM can transmit
information from a vehicle or roadside device to neighboring vehicles.

• Receive and decode incoming messages from the WRM transmitted from
surrounding vehicles or roadside devices.

• Record information sent to and information received from other devices
through the WRM.

• Allow an interface to change WRM parameters and application-specific
communication parameters.

Table 2-1 refers to commonly used terms and their definitions.

Table 2-1. Definitions Used Throughout the Document

Test Scenario Parameters communication parameters to be set according
to the test scenario defined in task 10

Wave Radio Module (WRM) configurable radio module provided as a work
output from VSC Task 6D

2.2 Development Requirements
The Task 9 device shall be the existing laptop computers currently used as part of the VSC
communications test kit, with Windows operating system installed. The software to be developed
by the supplier for VSC Task 9 shall be configured to operate on the Task 9 device. The
deliverables for Task 9 shall include validation of correct functional operation of developed
software on the Task 9 device, plus all source code, development environments and any necessary
licensing so that members of the VSC consortium can freely modify the source code to perform
specific tasks and create new applications.

Appendix F 2-2

2.3 Applications
The Task 9 software shall have the capability to run one application at a time with the
Task 9 device being configurable to easily choose amongst a set of preloaded
applications.

As part of this task, the supplier developing the Task 9 software shall provide two basic
applications for use on the Task 9 device. The on-board unit (OBU) test application will
be used in a vehicle and will wirelessly broadcast vehicle parameters and decode
incoming packets containing surrounding vehicle parameters. The roadside unit (RSU)
test application will be used near a roadway infrastructure device such as a traffic signal
and will broadcast traffic signal information. The next two subsections discuss these two
applications and the unique requirements of each. The last subsection discusses common
requirements of these applications.

2.3.1 On-Board Unit (OBU) Test Application
Figure 2-1 shows the basic physical connections the OBU Test application will utilize.

J1850,
RS-232,
Analog,
Digital, etc.

C
A

N

Vehicle Signal
Devices

GPS Receiver

WRM (Task 6D)

Task 9 Device External Computer

100 Mbps
Ethernet

RS-232

OEM Specific

Ethernet

OEM-Provided
Vehicle Interface
Device (Optional)

Second
RS-232

Optional
Connection

Standard
Connection

CAN

Figure 2-1. Task 9 Device in the OBU Test Application Configuration

2.3.1.1 OEM Vehicle Interface

In the OBU test application, the Task 9 device shall use a Controller Area
Network (CAN) bus to receive messages with vehicle information such as vehicle
speed, brake position, acceleration, etc. The format of the information received on
the CAN bus is defined in Section 6.3.

Appendix F 2-3

The OEM Vehicle Interface software shall be written so that OEMs may modify
the source code to achieve an alternative mapping from CAN message identifiers
and formats to vehicle data.

2.3.1.2 Wireless Data Output

The OBU test application shall periodically issue commands to the WRM to
transmit the latest GPS and vehicle information wirelessly. The periodicity of the
transmitted information shall be adjustable through the control user interface and
shall allow periods at least as small as 10 milliseconds. The format of the data
sent wirelessly is defined in Section 3.2.2.

2.3.1.3 Roadside Unit (RSU) Test Application
Figure 2-2 shows the basic physical connections the RSU test application will utilize.

GPS Receiver

WRM (Task 6D)

Task 9 Device External Computer

100 Mbps
Ethernet

RS-232

Ethernet

Traffic Signal
Device

RS-232

Optional
Connection

Standard
Connection

Figure 2-2. Task 9 Device in the RSU Test Application Configuration

2.3.1.4 Traffic Signal Device Interface

The RSU test application shall decode traffic signal information from an RS-232
connection. The format of the information contained on the RS-232 connection is
defined in Section 6.4.

2.3.1.5 Wireless Data Output

The RSU test application shall periodically issue commands to the WRM to
transmit traffic signal information wirelessly. The periodicity of the transmitted
information shall be adjustable through the control user interface and shall allow
periods at least as small as 10 milliseconds.

Appendix F 2-4

The format and content of the data sent wirelessly, including GPS and traffic
signal information from the RS-232 connection on the Task 9 device, is defined in
Section 3.2.3.

2.3.1.6 Application Display
Control User Interface

The RSU test application shall be configurable so that the user has the capability
to modify constant parameters for the traffic signal information. Example constant
parameters that may require adjustment via the control user interface include
location of the intersection, directionality, stopping locations, number of lanes,
etc. The constant parameters that require adjustment will be defined by the
members of the VSC consortium.

2.3.2 OBU Test and RSU Test Common Requirements

2.3.2.1 GPS Receiver Interface

In the OBU test application, the Task 9 device shall use an RS-232 port to receive
ASCII messages formatted in the National Maritime Electronics Association
(NMEA) 0183 standard. At a minimum, the GPS receiver will be configured to
output the “GPGGA” and "GPVTG" strings defined by NMEA 0183. The
application shall parse these messages to get the GPS data required in other parts
of this document.

2.3.2.2 Interface to WRM
Telnet Interface to WRM

The WRM can be controlled via a telnet interface. For this reason, the Task 9
device shall have a telnet client allowing a user to connect to the WRM for
manual configuration.
IP API Interface to WRM

The IP API interface to the WRM consists largely of get, set, send, and transmit
commands supplied to calling applications through an API supplied with the
WRM. The API utilizes an Ethernet connection to send packets to the WRM
issuing commands. The API uses the IP Options field of the IP Header to send the
commands.

The API has been implemented and tested utilizing a Microsoft Windows
operating system. The supplier developing the Task 9 software will be responsible
interfacing with the API on the Task 9 device. The source code for the API will
be written utilizing Berkeley Sockets.

In the case where the WRM hardware becomes available but the API has not yet
been ported, telnet commands to the WRM may be used to statically configure the
WRM which will allow testing of other functionality.

Appendix F 2-5

2.3.2.3 Wireless Data Output

In addition to the data content sent from the OBU test and RSU test applications,
each data packet shall also contain the following:

• Sender ID (either preset OR randomized at start of test)

• Common Message ID (to be defined by VSCC members)

• Message Count (incrementing short unsigned integer)

• Broadcast Power
• Operating System Time (nanoseconds)

• State of Data Logging (i.e., logging active, logging inactive)

• Latitude, Longitude, Height (ellipsoidal)

• GPS Seconds in Week (conversion from UTC time to GPS Seconds in
Week) (set GPS Seconds in Week to zero for devices with no GPS
receiver attached)

• Heading (from GPS receiver)

2.3.2.4 Data Logging

By default, the Task 9 device shall record all data sent and all data received from
surrounding devices via the WRM. In addition, the Task 9 device shall record
reception parameters, timing, and statistics associated with each data packet. The
recorded reception parameters include:

• Receiver Signal Strength Indicator (RSSI)
• Distance to Sender (using valid GPS coordinates of sender and

receiver)

• Heading to Sender (using valid GPS coordinates of sender and
receiver)

• Current GPS Seconds in Week of receiver

• Latitude, Longitude, Height (ellipsoidal) of receiver

• Heading (from GPS receiver)

• Speed (meters/second, via CAN from host vehicle if receiver)

The Task 9 device shall contain enough storage space to record eight hours of
data with five communicating devices in the immediate area transmitting a 100
byte packet once every 100 milliseconds. The 100 byte packet does not include
overhead introduced by the storage medium nor does it include the size of the
reception parameters.

Appendix F 2-6

Members of the VSC consortium plan to modify the OBU test and RSU test
applications to support specific application development in the potential future
VSC projects. The supplier of the Task 9 software shall write the OBU test and
RSU test applications in such a way as to provide a mechanism allowing
recording of additional data.

All parameters controllable from the control user interface shall be recorded.

2.3.2.5 Application Display

The Task 9 device shall have a monitor/display and data entry device (such as a
keyboard) allowing the user to configure the applications and observe their run-
time status.
Control User Interface

The applications shall retain the value of all parameters controllable from the
control user interface during a “normal” power cycle.

The control user interface shall allow the user to configure the applications to
transmit wirelessly through the WRM upon application execution. This implies
the application will also be decoding CAN and/or serial data as appropriate for the
application.

The control user interface shall allow the user to adjust all WRM communication
parameters described in the WRM interface specification.

The control user interface shall display the IP address of the Task 9 device at the
Ethernet port connected to the WRM.

The OBU test and RSU test applications shall each provide a display for
configuring the communication parameters. The display shall allow the user to
adjust the following communication parameters inherent to the application:

• Periodicity of message transmission

• Size of message being transmitted (append data to standard message
using same message ID)

• Destination IP address (as a default, this should be the broadcast IP
address)

The OBU test and RSU test applications shall have the ability to initiate, suspend,
or terminate a test. The test shall consist of the OBU test or RSU test applications
transmitting and recording data as described in previous sections. The length of
the test shall be controllable via the control user interface. The user shall be able
to control the length of the test by specifying the number of packets sent or the
number of seconds of test time. During a test, the Task 9 device shall record data
as outlined in sections above.

Appendix F 2-7

The OBU test and RSU test applications shall have the ability to specify a
filename for recorded test data. The format for the filename shall be <Test
Name>_<Test Run>_<GPS Date> where:

• <Test Name> is a field entered by the user

• <Test Run> is an automatically incrementing number incremented
after a test has ended (i.e., terminated by the user, maximum number
off packet sent, test time exceeded)

• <GPS Date> is derived from the local GPS information.

Real-Time Interface

The OBU test and RSU test applications shall each have an active visual display
that shows other Task 9 devices that have communicated with the host Task 9
device. The display shall support at least 10 other Task 9 devices and update the
information displayed at least once per second. The text on the display should be
easily readable in a vehicular environment. For each device, the following shall be
displayed:

• Sender ID

• State of Data Logging

• Most recent Message Count

• Distance to Sender

• Relative Heading to Sender = Heading to Sender (from GPS
differencing) – Heading (only to be calculated when host vehicle speed
> 5 m/s)

• RSSI

• Speed

Appendix F 3-1

3 Application Message Specification

3.1 Introduction
This chapter provides the Message Specification for the Wireless Access in Vehicular
Environments (WAVE) application which was developed in accordance with the
requirements in Chapter 2.

3.1.1 Scope
This Task 9 Application (T9App) Message Specification describes the format and content
of the OBU and RSU message data sent by the T9App to the WAVE Radio Module
(WRM) for wireless transmission. The requirements in this document were derived from
the requirements in Chapter 2, the Preliminary Vehicle-To-Vehicle Common Message
Set (defined in Section 6.5), and the VSCC-defined OBU and RSU message formats
defined Sections 6.3 and 6.4.

3.1.2 Application Interfaces
This section describes the T9App interfaces. Figure 3-1 and Figure 3-2 illustrate the OBU
and RSU configurations. For the OBU, the T9App inputs data from a GPS receiver and
vehicle bus. For the RSU, the T9App inputs data from a GPS receiver (optional) and
traffic signal. The T9App extracts selected data, formats the messages defined in
Chapter 3.2, and sends the messages to the WRM. The subparagraphs below describe the
relevant data transferred over each interface.

OBU Configuration

T9App

Task 9 Host Device

GPS
Receiver Vehicle Bus WRM

Figure 3-1. OBU Interfaces

Appendix F 3-2

RSU Configuration

T9App

Task 9 Host Device

GPS
Receiver

Traffic
Signal WRM

Figure 3-2. RSU Interfaces

3.1.3 GPS Receiver Interface
The T9App receives GPS messages formatted in accordance with the National Maritime
Electronics Association (NMEA) 0183 standard [1] over an RS-232 interface. The
T9App uses information from the Global Positioning System Fix Data (GPGGA) and
Global Positioning Track Made Good and Ground Speed (GPVTG) strings. It obtains
date and time from either the UTC Date / Time and Local Time Zone Offset (GPZDA) or
the Recommended Minimum Specific GPS/Transit Data string. The T9App operates with
GPS receivers that output either string or both.

3.1.4 Vehicle Bus Interface
The T9App receives vehicle data formatted in accordance with Section 6.3 definitions
over a Controller Area Network (CAN) bus. The T9App uses information from the
Vehicle Velocity, Vehicle Acceleration, and Vehicle Devices messages.

3.1.5 Traffic Signal Interface
The T9App receives a traffic signal message formatted in accordance with the Traffic
Signal Interface Specification in Section 6.4 over an RS-232 interface.

3.1.6 WAVE Radio Module Interface
The T9App interfaces to the WRM in accordance with the WRM Interface Specification [2]. The
T9App sends the OBU and RSU messages to the WRM as the IP Frame Payload.

Appendix F 3-3

3.2 Message Definitions
This section specifies the format of the common message header (which precedes all messages)
and the OBU and RSU messages.

3.2.1 Common Message Header
Figure 3-3 illustrates the common message header format and the source of the data in each of the
fields. Table 3-1 provides a description of each of the fields.

 Bit

Byte

1 Calculated value
2
3 Calculated from GPS,GPZDA
4 or GPRMC
5 GPS, GPGGA
6
7
8
9 GPS, GPGGA
10
11
12
13 GPS, GPGGA
14
15
16 GPS, GTVTG (True Heading)
17
18 Default value or user input
19
20 Calculated value
21
22 Log User input (Log, Tx power)
23 OS High Precision Timer
24
25
26
27
28
29

SOURCE
Packet Length MSByte

GPS Seconds in Week …

4 3 2 1(lsb)8 7 6 5

Packet Length LSNybble (LSBit = 1 Byte)

GPS Seconds in Week LSByte

GPS Seconds in Week MSNybble

Sender ID MSByte
Sender ID LSByte

Message Count MSByte
Message Count LSByte

OS Time MSByte
"

Tx Power (LSBit = 1 dBm)Unused

OS Time LSByte (LSBit = 1 nanosecond)

"
"
"
"

GPS Longitude MSByte
"
"

GPS Longitude LSByte (LSBit = 10**-7 decimal degrees; signed)
GPS Latitude MSByte

"

GPS Latitude LSByte (LSBit = 10**-7 decimal degrees; signed)
"

GPS Heading MSByte
GPS Heading (LSBit = 0.01 degrees; signed; 0 degrees = North)

GPS Altitude MSByte
Altitude (LSBit = 1 cm; unsigned; offset by +1 km)
Unused Altitude, LSNybble

Figure 3-3. Common Message Header Format

Appendix F 3-4

Table 3-1. Common Message Header Field Descriptions

Field Name Description

Packet Length Total packet length including common message header and message
body (i.e., OBU message or RSU message, plus the user-specified
number of fill bytes).

GPS Seconds in Week Number of seconds since the beginning of the week. The range is 0 to
604,799. For units without a GPS receiver, this field is set to 0.

GPS Longitude, Latitude,
Altitude

Position information received from the GPS receiver. The altitude is the
height above ellipsoid.

GPS Heading True heading information received from the GPS receiver. This field is set
to 0 in RSU messages.

Sender ID Sender ID of the source of the message. The range is 0 to 65535.

Message Count Number of messages sent during the current test. The first message is
sent with a message count of 1 and the count is incremented in
subsequent messages. The count rolls over when it is incremented past
65535.

OS Time Timestamp from OS clock. The precision and accuracy of the time will
vary based on the host device. For the current T9app implementation, the
precision will not be accurate to nanoseconds. The timestamp begins at
an arbitrary value at the beginning of a test. It rolls over approximately
every 28 months.

Log Logging status. 1 = logging enabled. 0 = logging disabled.

Tx Power Transmit power setting of the message sender. The range of values is 0
to 20, or 31. A value of 0 to 20 indicates the power setting in dBm. A value
of all 1s (i.e., 31) indicates full power.

3.2.2 OBU V2V Safety Message
Figure 3-4 illustrates the SAE V2V Safety Message format that will be used as the OBU
message. All signed values are two’s complement unless otherwise noted. The figure also
lists the source of the data that the T9App will use to populate the message fields
Table 3-2 provides definitions for fields with discrete integer values.

Appendix F 3-5

 Bit
Byte

1 Set to 0
2 WRM MAC Address
3
4
5
6
7
8 Set to 0
9 GPS, GPGGA
10
11
12
13 GPS, GPGGA
14
15
16
17 GPS, GPGGA
18
19
20 GPS, GPZDA or GPRMC
21
22
23
24
25 GPS. GPVTG (True Heading)
26
27 CAN, Vehicle Velocity Msg
28
29 CAN, Vehicle Acceleration Msg
30 CAN, Vehicle Acceleration Msg
31
32 CAN, Vehicle Velocity Msg
33
34 CAN, Vehicle Devices Msg
35 CAN, Vehicle Devices Msg
36 CAN, Vehicle Devices Msg
37

38 CAN, Vehicle Devices Msg
39 CAN, Vehicle Devices Msg
40 Set to 0
41
42 Set to 0

SOURCE

Longitudinal Acceleration MSNybble Lateral Acceleration LSNybble (LSBit = 0.01 m/s2; signed)

4 3 2 1(lsb)8 7 6 5
Message Type

Temporary ID MSByte
Temporary ID...
Temporary ID...
Temporary ID...
Temporary ID...

Temporary ID LSByte
Precision Indicator (Meaning TBD)

Heading (LSBit = 0.01 degrees; signed; 0 degrees = North)

Longitude of center of vehicle MSByte
"
"

 Longitude LSByte (LSBit = 10-7 decimal degrees; signed)
Latitude of center of vehicle MSByte

"
"

 Latitude LSByte (LSBit = 10-7 decimal degrees; signed)

Turn Signal/Hazard
Signal

Altitude of center of vehicle MSByte

Anti-Lock Brake State

Throttle Position (LSBit = 0.5% open; unsigned)

Altitude (LSBit = 1 cm; unsigned; offset by +1 km)

UTC Time MSByte

UTC Time LSByte (LSBit = 0.001 seconds)

Unused Altitude LSNybble

Vehicle Width LSByte (LSBit = 1 centimeter)

Yaw Rate MSByte
Yaw Rate LSByte (LSBit = 0.01 deg/sec; signed)

Steering Wheel Angle MSByte
Steering Wheel Angle LSByte (LSBit = 0.02 degrees; signed)

Unused System Health

Vehicle Width (Upper 2 bits) Vehicle Length (Lower 6 bits; LSBit = 1 cm; unsigned)
Vehicle Length MSByte

Brake Applied Status

Number of milliseconds since Jan. 1, 2004 at 00:00:00

Vehicle Speed MSByte
Vehicle Speed LSByte (LSBit = 0.01 m/s; unsigned)

Lateral Acceleration MSByte

Longitudinal Acceleration LSByte (LSBit = 0.01 m/s2; signed)

Headlights

Brake Applied Pressure

Traction Control State

Heading MSByte

Figure 3-4. OBU V2V Safety Message Format

Appendix F 3-6

Table 3-2. OBU V2V Safety Message Discrete Field Definitions

Byte Field Name Description

35 Brake Applied Status 0000 = All off
XXX1 = Left front
XX1X = Left rear
X1XX = Right front
1XXX = Right rear
1111 = All on

35 Brake Applied Pressure 0000 = Not equipped
0001 = Minimum braking pressure
0010 …
1111 = Maximum braking pressure

38 Headlights 00 = Off
01 = Daytime running lights
10 = On
11 = Brights

38 Turn Signal/Hazard Signal 00 = Off
01 = Left turn signal
10 = Right turn signal
11 = Hazard signal

38 Traction Control State 00 = Not equipped
01 = Off
10 = On
11 = Engaged

38 Anti-Lock Brake State 00 = Not equipped
01 = Off
10 = On
11 = Engaged

39 System Health 0000 = No faults detected
0001 = Specific error codes
…
1111 = "

3.2.3 RSU Traffic Signal Message
Figure 3-5 and Figure 3-6 illustrate the VSCC defined RSU Traffic Signal Message
format that will be used as the RSU message. All signed values are two’s complement
unless otherwise noted. The figure also lists the source of the data that the T9App will
use to populate the message fields. Table 3-3 provides definitions for fields with discrete
integer values.

Appendix F 3-7

 Bit
Byte

1 Set to 1
2 WRM MAC Address
3
4
5
6
7
8 Set to 0
9 GPS, GPGGA or GUI

10
11
12
13 GPS, GPGGA or GUI
14
15
16
17 GPS, GPGGA or GUI
18
19
20 GPS, GPZDA or GPRMC
21 0 if no GPS
22
23
24
25 GUI
26
27
28
29 GUI
30
31
32
33 GUI
34
35
36 GUI
37
38 Traffic Signal
39 Traffic Signal
40
41 GUI
42
43 GUI
44
45
46
47 GUI
48
49
50

8 7 6 5 4 3 2 1(lsb)
Message Type

Temporary ID...
Temporary ID...
Temporary ID...

Temporary ID MSByte
Temporary ID...

Temporary ID LSByte
Precision Indicator (Meaning TBD)

"

Longitude of RSU GPS Antenna MSByte
"
"

 Longitude LSByte (LSBit = 10-7 decimal degrees; signed)
Latitude of RSU GPS Antenna MSByte

"
"

 Latitude LSByte (LSBit = 10-7 decimal degrees; signed)
Altitude of RSU GPS Antenna MSByte

Altitude LSByte (LSBit = 1 cm; unsigned; offset by +1 km)

Altitude LSByte (LSBit = 1 cm; unsigned; offset by +1 km)

UTC Time MSByte

UTC Time LSByte (LSBit = 0.001 seconds)

Unused Altitude LSNybble

Time Left LSByte (LSBit = 0.001 seconds) (This field is invalid if current state is red.)

"

Unused

Directionality LSByte (LSBit = 0.01 degrees; signed; 0 degrees = North)
Current State of Traffic Light at Stopping Location #1

Time Left in Current State of Traffic Light at Stopping Location #1 MSByte

Number of milliseconds since Jan. 1, 2004 at 00:00:00

 Latitude LSByte (LSBit = 10-7 decimal degrees; signed)
Altitude of Stopping Location #1 MSByte

Directionality of Stopping Location #1 MSByte

Longitude of Stopping Location #1 MSByte

"

Latitude of Stopping Location #1 MSByte
"

Altitude LSNybble

 Longitude LSByte (LSBit = 10-7 decimal degrees; signed)

Duration of Yellow State at Stopping Location #1 MSByte

Longitude of Stopping Location #2 MSByte
"
"

Yellow State Duration LSByte (LSBit = 0.001 seconds)

 Longitude LSByte (LSBit = 10-7 decimal degrees; signed)
Latitude of Stopping Location #2 MSByte

"
"

 Latitude LSByte (LSBit = 10-7 decimal degrees; signed)

SOURCE

Figure 3-5. RSU Traffic Signal Message Format (Part 1 of 2)

Appendix F 3-8

51 GUI
52
53
54 GUI
55
56 Traffic Signal
57 Traffic Signal
58
59 GUI
60
61 GUI
62
63
64
65 GUI
66
67
68
69 GUI
70
71
72 GUI
73
74 Traffic Signal
75 Traffic Signal
76
77 GUI
78
79 GUI
80
81
82
83 GUI
84
85
86
87 GUI
88
89
90 GUI
91
92 Traffic Signal
93 Traffic Signal
94
95 GUI
96

Altitude of Stopping Location #2 MSByte
Altitude LSByte (LSBit = 1 cm; unsigned; offset by +1 km)

Unused Altitude LSNybble
Directionality of Stopping Location #2 MSByte

Directionality LSByte (LSBit = 0.01 degrees; signed; 0 degrees = North)
Current State of Traffic Light at Stopping Location #2 (See Below)

Time Left in Current State of Traffic Light at Stopping Location #2 MSByte
Time Left LSByte (LSBit = 0.001 seconds) (This field is invalid if current state is red.)

Duration of Yellow State at Stopping Location #2 MSByte
Yellow State Duration LSByte (LSBit = 0.001 seconds)

Longitude of Stopping Location #3 MSByte
"
"

 Longitude LSByte (LSBit = 10-7 decimal degrees; signed)
Latitude of Stopping Location #3 MSByte

"
"

 Latitude LSByte (LSBit = 10-7 decimal degrees; signed)
Altitude of Stopping Location #3 MSByte

Altitude LSByte (LSBit = 1 cm; unsigned; offset by +1 km)
Unused Altitude LSNybble

Directionality of Stopping Location #3 MSByte
Directionality LSByte (LSBit = 0.01 degrees; signed; 0 degrees = North)

Current State of Traffic Light at Stopping Location #3 (See Below)
Time Left in Current State of Traffic Light at Stopping Location #3 MSByte

Time Left LSByte (LSBit = 0.001 seconds) (This field is invalid if current state is red.)
Duration of Yellow State at Stopping Location #3 MSByte

Yellow State Duration LSByte (LSBit = 0.001 seconds)
Longitude of Stopping Location #4 MSByte

"
"

 Longitude LSByte (LSBit = 10-7 decimal degrees; signed)
Latitude of Stopping Location #4 MSByte

"
"

 Latitude LSByte (LSBit = 10-7 decimal degrees; signed)
Altitude of Stopping Location #4 MSByte

Altitude LSByte (LSBit = 1 cm; unsigned; offset by +1 km)

Yellow State Duration LSByte (LSBit = 0.001 seconds)

Current State of Traffic Light at Stopping Location #4 (See Below)
Time Left in Current State of Traffic Light at Stopping Location #4 MSByte

Time Left LSByte (LSBit = 0.001 seconds) (This field is invalid if current state is red.)
Duration of Yellow State at Stopping Location #4 MSByte

Unused Altitude LSNybble
Directionality of Stopping Location #4 MSByte

Directionality LSByte (LSBit = 0.01 degrees; signed; 0 degrees = North)

Figure 3-6. RSU Traffic Signal Message Format (Part 2 of 2)

Appendix F 3-9

Table 3-3. RSU Traffic Signal Message Discrete Field Definitions

Byte Field Name Description

36, 56, 74, and 92 Current State of Traffic Light 0 = Green

2 = Yellow

3 = Red

Appendix F 4-1

4 Testing System Specification and Architecture

4.1 Introduction
This chapter provides the Software Design Document for the Wireless Access in
Vehicular Environments (WAVE) application developed in accordance with the
requirements in Chapter 2.

4.1.1 Scope
This section describes the architecture, classes, data structures, and design goals of the
Task 9 Application (T9App). It also provides the guidance for implementing future
enhancements.

4.2 Architecture

4.2.1 Overview
Figure 4-1 illustrates the T9App architecture. The T9App consists of the WAVETest.exe,
the WaveAPI.DLL and the PCAN_USB.DLL. Denso developed the software for the
WAVETest.exe and WaveAPI.DLL. Grid Connect supplied the PCAN_USB.DLL with
their USB Controller Area Network (CAN) adapter.

 WAVETest.exe

CAN Interface
(PCAN_USB.DLL)

WRM Interface
(WaveAPI.DLL)

T9App

Figure 4-1. T9App Architecture

4.2.2 External Interfaces
Figure 4-2 illustrates the T9App external interfaces. The T9App interfaces to a GPS
receiver, a vehicle bus (OBU only), a traffic signal (RSU only), and the Wave Radio
Module (WRM). The subparagraphs below describe the software supporting each of
these interfaces.

Appendix F 4-2

OBU

T9App

Task 9 Host Device

GPS
Receiver

Vehicle
Bus WRM

RSU

T9App

Task 9 Host Device

GPS
Receiver

Traffic
Signal WRM

RS-232 RS-232CAN Ethernet RS-232 Ethernet

Figure 4-2. T9App External Interfaces

4.2.2.1 GPS/Traffic Signal Interface

The T9App interfaces to the GPS and Traffic Signal using the standard Microsoft
Windows serial port drivers.

4.2.2.2 Vehicle Bus Interface

The T9App interfaces to the vehicle bus using the PCAN_USB.DLL supplied by
Grid Connect. The Task 9 Host Device (HD) must also have the Grid Connect
PCAN_USB.SYS driver installed.

4.2.2.3 WRM Interface

The T9App interfaces to the WRM using the WaveAPI.DLL originally developed
for VSCC under Task 6D.

4.2.3 User Interface

4.2.3.1 Screen Shots

The T9App User Interface is a collection of configuration dialogs and a real time
Test Display dialog screen. See Figure 4-3 for screen shots of the configuration
dialogs and Figure 4-4 for the Test Display dialog.

Appendix F 4-3

Figure 4-3. Configuration Dialogs Screen Shots

Figure 4-4. Test Display Dialog Screen Shot

Appendix F 4-4

4.2.3.2 T9App Dialog to Class Relationships

Table 4-1 summarizes the classes for the main application and the dialogs. For all
dialogs, a Microsoft Foundation Class (MFC) based GUI class controls the
display, data entry, and range checking. For configuration dialogs, a second
information class (generic class type) stores the data in a portable manner.

Table 4-1. T9App Dialog Class Summary

Dialog/App GUI Class Information Class

Main Windows App CWaveTestApp N/A

Main Dialog CWaveTestDlg N/A

WRM Configuration
Dialog

CVSCCGUIDlg CWrmControl

Comm Parameters
Dialog

CCommParamDialog CCommParams

Test Options Dialog CTestOptionsGui CTestOptions

Traffic Signal
Information Dialog

CRsuParamtersDialog CSignalInfo

Location Information
Dialog

CLocationDialog CLocationInfo

Test Display Dialog CTestStatusDialog N/A

4.2.4 Test Control

4.2.4.1 Class Architecture

The CTestStatusDialog class controls test execution. Figure 4-5 illustrates the
high level architecture in a Unified Modeling Language (UML) format (see
www.uml.org for more information). The CTestStatusDialog class owns control
classes for each hardware interface (i.e., CGpsControl, CSignalControl,
CWrmControl, and CCanControl). The CSerialPort class manages the serial ports
for the GPS and Traffic Signal interfaces.

The ThisDevice object maintains local device information and the CDeviceDB
class maintains OBU or RSU message data received from each unique sender ID.
The CTestLog class writes the test log.

http://www.uml.org/

Appendix F 4-5

CAppMain CTopDialog

+StartTesting()
+StopTesting()

-TestLog : CTestLog
-WrmControl : CWrmControl
-GpsControl : CGpsControl
-CanControl : CCanControl
-SignalControl : CTrafficSignalControl
-SerialIf : CSerialIf

CTestStatusDialog

+StartLogging(in filename : wchar_t)
+LogReceive(in Device : CWaveDeviceInfo)
+LogTransmit(in Device : CWaveDeviceInfo)
+LogConfig()
+StopLogging()

CTestLog

+GetLoggingState() : short
+GetDeviceType() : int
+CreateWrmMessage()
+ParseWrmMessage()

+SenderID : unsigned short
+MessageCount : unsigned short
#Location : CLocationInfo
-m_Rssi : double
-m_WrmMsg : T_WRM_MSG
-LocationInfo : CLocationInfo

CWaveDeviceInfo

+Update(in Device : CWaveDeviceInfo)
+FlushDevices()

-m_List : CWrmControl
CDeviceDatabase

+GetDistance()
+GetRelativeHeading()
+RxMessage(in Msg : T_GPS_POSITION)
+SetRefLoc(in Location : CLocationInfo)
+GetBearing()
+GetLatitude() : double
+GetLongitude() : double
+UpdateFromNmeaMsg()

+GpsPosition : T_GPS_POSITION
CLocationInfo +RxUnitMessage(in Msg : T_CAN_MSG)

-VehicleDevices
-Velocity
-Acceleration

CVehicleInfo

+RxUnitMessage(in Msg : T_SIG_MSG)

-StoppingLocations
-Lanes

CSignalInfo

1

1

1

1

1

-Neighbors0..*

1..1

-Rsu

0..1

1..1

-OBU

0..1

0..1
1..1

*

-OBU0..1

+GetMsgCount()
+GetMsg()
+FlushMessages()
+StartRx()
+StopRx()

CGpsControl

+GetMsgCount()
+GetMsg()

CSignalControl

+Initialize()
+StartReceiving()
+StopReceiving()
+TransmitString()
+TransmitBytes()

CSerialPort

*

1..*

SenderID : unsigned short
MessageCount : unsigned short
Location : CLocationInfo
m_Rssi : double
m_WrmMsg : T_WRM_MSG
LocationInfo : CLocationInfo

ThisDevice : CWaveDeviceInfo

1

1

+GetMsgCount()
+GetNextMsg() : T_CAN_MSG
+FlushMessages()
+StartRx()
+StopRx()

-CanIf : CCanIf
CCanControl

«interface»
PCANUSB.DLL

«datatype»
T_WRM_MSG

+GetConfig() : T_WRM_CFG
+SetConfig(in Parameter1 : T_WRM_CFG)
+GetMsgCount()
+GetNextMsg() : T_WRM_MSG
+FlushMessages()
+StartRx()
+StopRx()

-WrmIf : CWrmInterface
CWrmControl

«interface»
WaveApi

Figure 4-5. T9App Test Execution Architecture (UML Diagram)

4.2.4.2 Test Processing

The CTestStatusDialog object maintains three timers, a Tx Message Interval
Timer, a Screen Refresh Timer, and an optional Traffic Signal Service Timer. The
T9App sets the Tx Message Interval Timer to the user-entered value on the
Comm Parameters screen. The Screen Refresh Timer is always set to one second.
The T9App sets the Traffic Signal Service Timer to the user-entered value on the
Comm Parameters screen.

Appendix F 4-6

Upon expiration of the Tx Message Interval Timer, the CTestStatusDialog object
processes all of the messages received from the GPS and Vehicle Bus since the
last timer expiration. It formats the OBU or RSU message from the latest
information and sends the message to the WRM for transmission and to the
CTestLog object for logging. It also processes all messages received from the
WRM. It sends the data along with the required reception parameters (e.g., RSSI,
timestamp) to the CDeviceDatabase object for entry in the database and to the
CTestLog object for logging.

Upon expiration of the Screen Refresh Timer, the T9App queries the
CDeviceDatabase and updates the Test Display dialog with the latest information
received from remote devices, in order of first unit to the last. The T9App also
updates the local device information and current testing statistics.

Upon expiration of the Traffic Signal Service Timer, the T9App sends out its
periodic refresh message and updates its traffic signal information with all
messages received since the last timer expiration.

The timer processing continues until the user-defined test completion criteria is
met, or until the user presses the quit button.

4.3 Class Descriptions
Table 4-2. T9App Class Summary lists the classes used for test execution along with their
type and purpose. The class types are control, container, and processing. Some classes are
both container and processing. Control classes abstract an underlying API and provide a
C++ interface for the T9App architecture. Container classes provide wrapper functions
for getting and setting various T9App data stores and messages. Processing classes use a
combination of control and/or container classes to implement application functionality
and features.

Table 4-2. T9App Class Summary

Class Class Type Purpose

CCanControl Control Uses PCANUSB.DLL to read messages from
CAN bus, queues CAN messages for
processing.

CCanMsg Container Wraps CAN messages received from CAN I/F.

CCommParams Container Holds communication related test parameters.

CDeviceDatabase Container Holds list of remote devices from which
messages were received during a test run.

CGpsControl Control Reads and queues GPS NMEA messages.

CGpsPosition Container Wraps and parses NMEA message data.

CLocationInfo Container/Processing Performs navigation calculations and data store
for location related information.

Appendix F 4-7

Class Class Type Purpose

CSerialPort Processing Provides a C++ wrapper for the Microsoft
Standard Serial Port Library, and provides a
thread based event handler w/ dispatch. The
GPS and Traffic Signal Control modules use
this class.

CSignalControl Control Reads / polls and queues traffic signal
messages.

CSignalInfo Container Holds traffic signal stopping location and current
state information.

CTestLog Processing Logs all transmitted and received data.

CTestOptions Container Holds test options related parameters.

CTestStatusDialog Main Control /
Processing

Runs test case and displays test status.

CVehicleInfo Container Holds all vehicle related information.

CWaveDeviceInfo Container Provides master container for all WAVE device
information, OBU and RSU. Also holds generic
WAVE device information, not specific to RSU
or OBU.

CWrmControl Control Reads/queues and transmits WRM messages.

CWrmMsg Container/Processing Provides generic wrapper for transmitting WRM
messages, also provides parsing and encoding
functions for over the air formats.

4.3.1 Class Descriptions
The following subparagraphs summarize each T9App class, and describe each class's
public methods and attributes.

4.3.1.1 Class CCanControl

The CCanControl class encapsulates the CAN USB interface. It starts a receive
processing thread, and buffers CAN messages in real time for deferred
processing. See Table 4-3 for details.

Appendix F 4-8

Table 4-3. CCanControl Methods and Attributes

Method/Attribute Description

unsigned int
GetCanBusPollingInterval();

Returns value of the CanBusPollingInterval.

CCanMsg& GetNextRx(); Retrieves the head of the message list. If the list is
empty, the results are undefined.

int GetRxCount(); Returns message count of CAN message list.

int Init(int CanBaud, int CanFrame); Attempts to initialize CAN Interface via the PCAN_USB
DLL. Returns error codes if unable to load or initialize
DLL.

BOOL InitRxThread(); Creates and starts execution of thread to check for and
receive CAN messages from PCAN_USB.DLL. Places
received messages into the message list.

SetCanBusPollingInterval(unsigned
int interval);

Sets the interval to check the CAN bus status.

StopRxThread(); Stops the receive thread; preserves all unprocessed
CAN messages in the queue.

BOOL m_Initialized; Tracks current init state of underlying CAN Interface
DLL.

4.3.1.2 Class CCanMsg

The CCanMsg class encapsulates a Rx CAN message. It parses all supported
CAN messages (currently 3), and fills out a preconfigured CVehicleInfo object
when the Update () method is called. See Table 4-4 for details.

Table 4-4. CCanMsg Methods and Attributes

Method/Attribute Description

TPCANMsg* GetRxPacket() Gets next CAN message.

SetTheVehicle(CVehicleInfo*
Vehicle)

Sets the vehicle object that will be accessed when the
UpdateVehicle method is called to parse the CAN Messages.

UpdateVehicle Parses the privately held CAN message and calls the
appropriate set methods in the preconfigured Vehicle object for
each data item read from the CAN message.

4.3.1.3 Class CCommParams
The CCommParams class owns the communication parameters for the T9App. The config dialogs
access the members of this class pre-test, and the test status dialog uses this class to set up the test
run. See Table 4-5 for details.

Appendix F 4-9

Table 4-5. CCommParams Methods and Attributes

Method/Attribute Description

BYTE* GetDestMacAddress();

SetDestMacAddress(BYTE a1,BYTE a2, BYTE
a3, BYTE a4, BYTE a5,BYTE a6);

Gets or sets Destination MAC address.

friend ostream &operator<<(ostream&, const
CCommParams&);

friend istream &operator>>(istream&,
CCommParams&);

PrintHeaders(ostream &output);

bool ConfigLoaded();

These methods support saving, loading, and
logging of the configuration.

USHORT GetTrafficSignalPollRate();

SetTrafficSignalPollRate(USHORT rate);

Gets traffic signal polling rate.

SetHostIpAddress(BYTE a1, BYTE a2, BYTE
a3, BYTE a4);

GetHostIpAddress(BYTE *a1, BYTE *a2, BYTE
*a3, BYTE *a4);

CString& GetHostIpAddressString();

Sets and gets the Host IP Address
parameters – the T9App automatically gets
the IP address from the OS.

SetDestIpAddress(unsigned long);

GetDestIpAddress(BYTE*a1, BYTE *a2, BYTE
*a3, BYTE *a4);

GetDestIpAddress(BYTE* address);

unsigned long GetDestIpAddress();

CString& GetDestIpAddressString();

Sets and gets the Destination IP address.

unsigned short GetSenderId();

int SetSenderId(CString& val);

SetSenderId(USHORT val);

CString& GetSenderIdString();

Gets and sets the Sender ID for the over the
air message header.

int GetMessageRateMsec();

int SetMessageRateMsec(CString& val);

SetMessageRateMsec(int val);

CString& GetMessageRateMsecString();

Gets and sets the rate at which messages
are sent over the air.

int SetMessageSize(CString& val);

SetMessageSize(int val);

CString& GetMessageSizeString();

Sets the minimum over the air message
size. The T9App automatically increases this
value to the actual message size if it is too
low.

ResetDefaults(); Resets all values to defaults.

Appendix F 4-10

Method/Attribute Description

unsigned int m_CanBaudIndex;

unsigned int m_CanInitType;

BOOL m_CanEnabled;

CAN I/F initialization parameters.

unsigned int m_GpsBaudIndex;

unsigned int m_GpsPort;

BOOL m_GpsEnabled;

GPS Serial Port initialization parameters.

unsigned int m_TrafficSignalBaudIndex;

unsigned int m_TrafficSignalPort;

BOOL m_TrafficSignalEnabled;

USHORT m_TrafficSignalPollRate;

Traffic Signal initialization parameters.

4.3.1.4 Class CDeviceDatabase

The CDeviceDatabase class maintains an up-to-date list of all remote WAVE
devices from which messages were received. This class contains 2 CLists, 1 for
OBUs and 1 for RSUs. See Table 4-6 for details.

Table 4-6. CDeviceDatabase Methods and Attributes

Method/Attribute Description

ResetDatabase() Iterates thru OBU and RSU lists and removes
each item.

CList<CWaveDeviceInfo,
CWaveDeviceInfo&> m_RsuList;

CList<CWaveDeviceInfo,
CWaveDeviceInfo&> m_ObuList;

CList Template, holds a list of references to OBU/
RSU class WAVE devices

void
UpdateRemoteDevice(CWaveDeviceInfo&
NewDevice);

Updates the remote device list by adding the
device or updating the data. This function is called
each time an over the air message is received
and successfully parsed into a new
CWaveDeviceInfo object.

4.3.1.5 Class CGpsControl

The CGPSControl class processes National Maritime Electronics Association
(NMEA) format messages from a GPS device plugged into a local configurable
serial port. The CTestStatusDialog (CDialog) object owns the serial port class,
due to serial class implementation. The CTestStatusDialog forwards all messages
from the serial port to this class for actual processing. See Table 4-7 for details.

Appendix F 4-11

Table 4-7. CGpsControl Methods and Attributes

Method/Attribute Description

BOOL Initialize(CWnd*
pPortOwner, int port, int
baudindex);

Called by the object owner to attempt to initialize the
serial port, returns FALSE if initialization fails.

OnCommunication,

OnErrDetected,

OnRxFlagDetected

Called by TestStatusDialog when rx char, error, or rxflag
event is received.

void ProcessMessages(); Processes the first message the GPS Control class may
have in its list.

Void
SetLocalDevice(CWaveDeviceInfo
*Device);

Sets the device to be updated when the NMEA messages
are parsed. .

StartRxThread(); Starts the serial ports receive thread, if the serial port
initialized without error.

StopRxThread(); Stops the serial ports receive thread, used when testing
is paused or terminated.

CSerialPort* m_Serial; Pointer to serial object controlled by this class.

4.3.1.6 Class CGpsPosition

The CGpsPosition class represents a decoded GPS position, and provides methods
to decode NMEA messages into a GPS position. Each local WAVE device’s
ClocationInfo will have a corresponding CGpsPosition object. See Table 4-8 for
details.

Table 4-8. CGpsPosition Methods and Attributes

Method/Attribute Description

UpdateFromNmeaMsg(CString
&data);

Given the NMEA message in a string, this method fills out
the details of the GPS Position and sets the appropriate
m_Received_XXX flags.

double m_Heading; GPS Heading.

BOOL m_Received_GGA; Holds flag that is set to true if this object processed a NMEA
GPGGA message. Note more than one received flag may
be set during life of this object.

BOOL m_Received_RMC; Holds flag that is set to true if this object processed a NMEA
GPRMC message. Note more than one received flag may
be set during life of this object.

BOOL m_Received_VTG; Holds flag that is sets to true if this object processed a
NMEA GPVTG message. Note more than one received flag
may be set during life of this object.

Appendix F 4-12

Method/Attribute Description

BOOL m_Received_ZDA; Set to true if this object processed a NMEA GPZDA
message. Note more than one received flag may be set
during life of this object.

double m_utc; Parsed UTC Time in fixed point format: Hhmmss.ss

double m_latitude; Parsed Latitude of position, ddmm.mmm

char m_latNS; Parsed Latitude North/South qualifier. Either ‘N’ or ‘S’

double m_longitude; Parsed Longitude of position, ddmm.mmm

char m_longEW; Parsed Longitude east/west qualifier. Either ‘E’ or ‘W’

int m_fixQual; Parsed fix quality.

int m_sats; Parsed number of satellites in view

double m_hdop; Parsed relative accuracy of horizontal position.

double m_altitude; Parsed units above mean sea level.

char m_altUnits; Parsed units qualifier for altitude. ‘M’ for meters.

double m_hogae; Parsed height of geoid above WGS84 ellipsoid (HOGAE) in
meters.

char m_hogUnits; Parsed units qualifier for HOGAE. ‘M’ for meters, this is the
units for the m_hogae

char m_csum[1]; Parsed NMEA checksum used by program to check for GPS
transmission errors. Not currently implemented.

CString m_utctime; UTC Time in String format.

int m_month, m_day, m_year; Parsed UTC month, day, and year.

int m_hours, m_minutes,
m_seconds, m_hundreths;

Parsed UTC hours, minutes, seconds, and hundredths.

4.3.1.7 Class CLocationInfo

The CLocationInfo class owns a GPS position and provides navigational
calculations and formatting retrieval methods for working with location
information. See Table 4-9 for details.

Table 4-9. CLocationInfo Methods and Attributes

Method/Attribute Description

unsigned char GetAltitudeLsb(); Gets LSB part of Altitude for the over the air
message.

unsigned short GetAltitudeMsb(); Gets MSB part of Altitude for the over the air
message.

CString& GetAltitudeStr(); Gets Altitude.

Double GetBearing(CLocationInfo&
Destination);

Computes the initial bearing from the local
location to the given destination.

Appendix F 4-13

Method/Attribute Description

CString& GetBearingString(CLocationInfo&
Destination);

Returns the initial bearing in a formatted string,
suitable for GUI display or logging.

CString& GetFormattedLatStr();

double GetLatitude();

Latitude access methods. Floating point, string.

CString& GetFormattedLongStr();

double GetLongitude();

Longitude access methods, floating point,
string. Etc.

DWORD GetGpsSecondsInWeek(); Returns pre-computed GPS seconds in week.
Returns zero if GPS messages containing this
information haven’t been received yet.

signed short GetHeadingInt(); Returns Heading in signed integer format,
suitable for over the air transmission.

CString& GetHeadingStr();

unsigned short GetHeadingUINT();

Heading access methods of various
combinations.

unsigned char GetPrecision(); Returns the precision of the OS timestamp.

double GetRelativeDistance(location)

CString& GetRelDistanceStr(location)

Computes distance from object to given
location.

double GetRelativeHeading(CLocationInfo&
Location)

CString& GetRelHeadingStr(CLocationInfo&
Location)

Computes and returns relative heading from
object to given location in different formats.

GetUTCTimeSinceJan12004(PTIME_MSEC
Value);

unsigned char
GetUTCTimeSinceJan12004Lsb();

unsigned long
GetUTCTimeSinceJan12004Msb();

Returns the number of milliseconds that have
elapsed since UTC Time January 1st, 2004.
This method uses the current UTC time
retrieved from GPS receiver as the starting
point. If UTC time has not been received from
the GPS yet, or if the GPS is not enabled, this
function returns 0 values in the TIME_MSEC
structure.

PrintHeaders(ostream &output); Outputs to stream the field labels for each
element that the overloaded input and output
functions read/write.

PrintHeaders(ostream &output, CString
prefix);

Outputs to stream the field labels with an
optional prefix for each element that the
overloaded input and output functions
read/write.

ResetLocationDefaults(); Resets all run-time values to zero.

SetAltitude(unsigned short msb, unsigned
char lsb);

Sets Altitude.

void SetAltitude(double alt); Sets Altitude.

int SetAltitudeStr(CString &val); Sets Altitude.

Appendix F 4-14

Method/Attribute Description

SetGpsSecondsInWeek(DWORD Seconds); Sets GPS seconds in week..

SetHeading(double Heading);

SetHeading(signed short Heading);

int SetHeadingStr(CString& heading);

Sets Heading.

int SetLatitude(CString &val);

SetLatitude(double val);

Sets Latitude.

int SetLongitude(CString &val);

SetLongitude(double val);

Sets Longitude.

SetPrecision(unsigned char Precision); Sets the precision of the OS timestamp.

SetUtcTimeSinceJan12004(TIME_MSEC
time);

Sets UTC time from the over the message.

UpdateLocationFromGpsPosition(CString&
NmeaMsg);

Updates the location from information in the
NMEA message.

friend ostream &operator<<(ostream&,
const CLocationInfo&);

Writes the current values of the member data
to the given ostream, used for logging
configuration and saving configuration.

friend istream &operator>>(istream&,
CLocationInfo&);

Reads member data from the given input
stream. Used to read application configuration
from disk.

4.3.1.8 Class CSerialPort

The CSerialPort class encapsulates the Microsoft serial port interface with a C++
methods and a threaded state machine for handling simultaneous transmit and
receive. The GPS control class and the traffic signal control class use this class.
The T9App configures the serial interfaces to send all events to the
CTestStatusDialog window. When the CTestStatusDialog receives events, it
forwards them to the appropriate control class depending on how the user
configured the serial ports. For example, if the user configured COM1 for GPS,
the CTestStatusDialog forwards all COM1 port event messages to the GPS
control class. See Table 4-10 for details.

Appendix F 4-15

Table 4-10. CSerialPort Class Methods and Attributes

Method/Attribute Description

GetCommEvents(); Returns the configured communications event masks.

GetDCB(); Returns the device control block created at
initialization.

GetWriteBufferSize(); Returns write buffer size that was specified in InitPort()
call.

InitPort(PortOwner, portnr, baud,
parity, databits,, stopsbits = 1,
dwCommEvents, nBufferSize)

Opens the specified serial port with the specified baud
rate, parity, stop bits, and tx buffer sizes.

KillThread(); Kills the comm. Port receive thread.

RestartMonitoring(); Stops and re-starts comm. port receive thread.

StartMonitoring(); Starts serial port receive thread.

StopMonitoring(); Pauses the serial port receive thread, doesn’t kill it.

WriteToPort(char* string); Adds the specified character string to the tx queue and
begins transmission.

WriteToPort(unsigned char* string,
unsigned int len);

Adds the specified byte buffer to the tx queue begins
transmission.

4.3.1.9 Class CSignalControl
Methods and Attributes

The CSignalControl class controls a traffic signal plugged into the serial port this
object has been given a reference to. See Table 4-11 for details.

Table 4-11. CSignalControl Methods and Attributes

Method/Attribute Description

USHORT GetPollingRate(); Returns current traffic signal polling rate in
milliseconds.

BOOL Initialize(CWnd *pPortOwner, int port,
int baudindex);

Initializes serial port according to the given
parameters. Returns false if init failed.

SetPollingRate(USHORT rate); Sets traffic signal polling interval in
milliseconds.

StartRxThread(); Starts receive thread if it isn’t already running.

Appendix F 4-16

Method/Attribute Description

void StateMachine(enum TS_EVENT Event,
void *data);

Traffic Signal state machine entry point. When
the traffic signal interface is enabled, the state
machine must be clocked by calling this
function a tick event parameter and tick
interval value as a data. When serial data is
received, this function must be called with
TSE_RX_DATA event, and a character in
data portion.

StopRxThread(); Stops the receive thread if it is running.

TransmitPeriodicRequest(); Transmits poll message to traffic signal.

CSerialPort* m_Serial; Serial port this object controls.

State Machine

The CSignalControl implements the Traffic Signal Interface with a simple state
machine. The state machine implements the initialization sequence in accordance
with the timing requirements. Table 4-12 lists the events processed by state
machine and describes each event.

Table 4-12. CSignalControl State Machine Events

Event Description

TSE_NONE No event.

TSE_INIT_OK Initialization sequence succeeded.

TSE_RX_DATA Serial port has received a character.

TSE_TX_DATA Serial port TX has completed.

TSE_RX_FLAG Serial port RX flag indicated.

TSE_ERROR Serial port error indicated.

TSE_CTS Serial port clear to send indication.

TSE_TICK Owner is indicating that time has elapsed.

TSE_PROCESS Indicates queued messages should be
processed.

TSE_SHUTDOWN Owner is shutting down.

Appendix F 4-17

4.3.1.10 Class CSignalInfo
The CSignalInfo class contains the traffic signal information. The CWaveDeviceInfo
owns this object which contains valid data for a RSU. See Table 4-13 for details.

Table 4-13. CSignalInfo Methods and Attributes

Method/Attribute Description

unsigned short GetDurationOfYellowLightMsec(int
signal);

unsigned short GetSignalPhaseNumber(int signal);

unsigned char GetSignalState(int signal);

unsigned short GetSignalStateTimeLeftMsec(int signal);

Obtain signal information from over
the air messages.

CString& GetLanesString(); Gets the number of lanes in a string
format.

friend ostream &operator<<(ostream&, const
CSignalInfo&);

friend istream &operator>>(istream&, CSignalInfo&);

PrintHeaders(ostream &output);

Writes T9App configuration to disk
or to test log.

ResetSignalDefaults(); Sets all signals to red state and
time left to 0.

int SetLanes(CString &lanes); Set the number of lanes.

SetSignalState(int Phase, SIGNAL_STATE State, int
SecondsLeft);

Set current signal state of a remote
RSU.

unsigned char GetSignalState(int signal);

unsigned short GetSignalStateTimeLeftMsec(int signal);

unsigned short GetSignalPhaseNumber(int signal);

unsigned short GetDurationOfYellowLightMsec(int
signal);

Obtain signal information from over
the air messages.

unsigned short
m_SignalPhaseNumber[MAX_SIGNALS];

Configured phase number for each
signal.

SIGNAL_STATE m_SignalState[MAX_SIGNALS]; Traffic light state for each signal.

unsigned short
m_SignalStateTimeRemainingMsec[MAX_SIGNALS];

Configured time remaining for each
signal.

CLocationInfo m_StoppingLocation[MAX_SIGNALS]; Coordinates of stopping locations.

unsigned short
m_YellowLightDurationMsec[MAX_SIGNALS];

Yellow light duration for each signal

Appendix F 4-18

4.3.1.11 Class CTestLog

The CTestLog class writes entries to the log. It is implemented with the ANSI
streams library. See Table 4-14 for details.

Table 4-14. CTestLog Methods and Attributes

Method/Attribute Description

void LogReceive(CWrmMsg& msg,
CWaveDeviceInfo& receiver);

Logs a receive entry. The function parses the message
into a CWaveDeviceInfo object, queries the object
values, and logs them to the current stream. The
receiver information is a required parameter to enable
logging of reception information.

LogTestParameters(CcommParams,
CTestOptions, CwaveDeviceInfo,
CwrmControl)

Writes T9App configurable parameters to current test
log file.

void LogTransmit(CWrmMsg& msg); Logs a transmit entry. The function reparses the
message back into a CWaveDeviceInfo object, queries
the sent values, and logs them to the current stream.

int StartLogging(CString TestName,
CString Path, CString GpsDate, int
pass);

Creates a candidate filename from a test name, file
path, and pass number. Tries to open that filename
read-only. If that filename exists, the function
increments pass number and tries again until the test
log filename is unique. Next, the test log filename is
opened for writing and the final pass number is returned
to calling function.

StopLogging(); Closes log file, forcing it to be written to disk.

4.3.1.12 Class CTestStatusDialog
Methods

Section 4.2.4 describes the CTestStatusDialog class. See Table 4-15 for the
method description.

Table 4-15. CTestStatusDialog Methods and Attributes

Method/Attribute Description

SetCommParams(CCommParams
&Params);

Sets pointer to communication parameters object
owned by Test App.

SetLocalDevice(CwaveDeviceInfo) Sets local CWaveDeviceInfo information to be used
for each test pass.

SetTestOptions(CTestOptions
&TestOptions);

Sets pointer to test options configuration object
owned by Test App.

SetWrmControl(CWrmControl
*WrmControl);

Sets pointer to WRM control object owned by Test
App.

Appendix F 4-19

Processes

Table 4-16 lists all of the threads and timers that the CTestStatusDialog class
owns. The CTestStatusDialog uses timers to meet the processing requirements.
The threads enable the test display to update without slowing down data events
for other functions. The CTestStatusDialog starts and stops the threads and timers
for each test pass.

Table 4-16. CTestStatusDialog Processes

Process Name Purpose Type

CcanControl.Rx_thread Checks for the presence of a
CAN message. Queues any
messages into
CcanControl’s message list.

Polling Thread. 10
millisecond sleep between
polling if CAN bus is idle. Not
configurable.

CwrmControl::rx_thread Checks for and retrieves
WRM messages from
WaveApi.dll.

Polling Thread. 10msec sleep
between polling if WRM is
idle. Not configurable.

TestStatusDialog::GpsSerial.rx
_thread

Serial event
handler/dispatcher.

Event Driven Thread

TestStatusDialog::ProcessMes
sages

Sends periodic updates.
Processes all WRM RX
messages, CAN messages,
and GPS Messages.

Timer executes at user
defined interval.

TestStatusDialog::SignalSerial
.rx_thread

Serial event handler/
dispatcher.

Event Driven Thread

TestStatusDialog::StartTesting Auto starts the first test pass
when user clicks Start
testing from main dialog.

10-millisecond timer single
shot timer, not configurable.

TestStatusDialog::TrafficSigna
lPolling

Clocks the traffic signal
interface state machine.

Timer executes at user
defined polling rate

TestStatusDialog::UpdateDispl
ay

Updates GUI at a regular
interval, prevents screen
flashing & excessive processor
utilization for GUI updates.

1-second timer, not
configurable.

4.3.1.13 Class CVehicleInfo

The CVehicleInfo class contains all vehicle information. It obtains local
information from the CAN bus and remote information by parsing an OBU
Vehicle to Vehicle (V2V) message received over the air. Since the requirements
for logging vehicle information and transmitting it over the air are slightly
different, 2 methods are provided for each vehicle attribute; one for displaying it
or logging to disk, and another to format values for over the air transmission. The
CVehicleInfo class also provides two methods for setting values, one to set values
from a received OBU message and another to set values from a CAN message (in
different formats). See Table 4-17 for details.

Appendix F 4-20

Table 4-17. CVehicleInfo Methods and Attributes

Method/Attribute Description

unsigned char GetBrakeInfo(); Gets the brake-applied status in upper nibble,
and brake-applied pressure in lower nibble.

double GetLatAccel();

signed short GetLatAccelShort();

Gets Lateral Acceleration

Double GetLongAccel(),

signed short GetLongAccelShort()

Gets Longitudinal Acceleration.

Unsigned char GetSignalAndControlStatus(); Gets:

Headlight status in bits 7,6

Turn signal/hazard in bits 5,4

Traction control in bits 3,2

Anti-lock brake state in bits 1,0

double GetSteeringWheelAngle();

Signed short GetSteeringWheelAngleShort();

Gets current steering wheel angle as a signed
number from -180.00 to +180.00.

unsigned char GetSystemHealth(); Gets system health bits in the lower nibble.

double GetThrottlePos(); Gets throttle position in same precision as
CAN bus message format (0.5%).

unsigned short GetVehicleLength(); Gets 14 bits of vehicle length in cm.

unsigned short GetVehicleWidth(); Gets 10 bits of vehicle width in cm.

Double GetVelocity(),

Unsigned int GetVelocityUINT(),

CString& GetSpeedStr();

Gets current vehicle speed in meters per
seconds.

double GetYawRate();

signed short GetYawRateShort();

Gets vehicle yaw rate in degrees as a signed
number. LSB = 0.01 deg/sec.

ResetVehicleDefaults(); Resets all values to starting state valid.

SetBrakeInfo(BYTE BrakeInfo); Sets the brake-applied status (in upper
nibble), and the brake-applied pressure (lower
nibble).

SetLatAccel(BYTE msb, BYTE lsb);

SetLatAccelmmSec(BYTE msb, BYTE lsb);

"

SetLongAccel(BYTE msb, BYTE lsb);

SetLongAccelmmSec(BYTE msb, BYTE lsb);

"

Appendix F 4-21

Method/Attribute Description

SetSignalAndControlStatus(BYTE
SignalAndControlStatus);

Sets parameters in OBU VTV message and
CAN format:

Headlight status in bits 7,6

Turn signal/hazard in bits 5,4

Traction control in bits 3,2

Anti-lock brake state in bits 1,0

SetSteeringWheelAngle(signed short Angle);

SetSteeringWheelAngle(double Angle);

"

SetSystemHealth(BYTE SystemHealth); Sets value from lower nibble.

SetThrottlePos(BYTE ThrottlePos); Sets throttle position from CAN Message or
OBU VTV message

SetVehicleLength(BYTE
VehicleLengthMsb,BYTE VehicleLengthLsb);

Currently initialized to zero. Not settable by
user or CAN message. Only the over the air
message parser calls this function.

SetVehicleWidth(BYTE
VehicleWidthMsb,BYTE VehicleWidthLsb);

Currently initialized to zero. Not settable by
user or CAN message. Only the over the air
message parser calls this function.

SetVelocity(WORD Speed);

SetVelocity(BYTE msb, BYTE lsb);

2 functions to support setting this value from
either a received CAN message or and OBU
VTV message.

SetYawRate(signed short YawRate);

SetYawRate(BYTE msb, BYTE lsb);

"

friend ostream &operator<<(ostream&, const
CVehicleInfo&);

Logs and saves T9App configuration.

friend istream &operator>>(istream&,
CVehicleInfo&);

"

4.3.1.14 Class CWaveDeviceInfo

The CWaveDeviceInfo class contains all information about a WAVE device,
either OBU or RSU. This class provides methods to get/set all attributes including
some formatting methods suitable for displaying WAVE device info on dialogs.
This class has overloaded streams operators so that device information can be
read or written from any streams type. This class also contains a static instance of
a vehicle and a traffic signal object. This class maintains the current RSSI,
Message Counts, Sender ID, and other overhead information required for each
WAVE device. Note T9App uses this object for storing information about both
local and remote WAVE devices. See Table 4-18 for details.

Appendix F 4-22

Table 4-18. CWaveDeviceInfo Methods and Attributes

Method/Attribute Description

bool ConfigLoaded(); Set to true if a previously saved configuration
file containing valid device information was
loaded.

int GetDeviceType();

SetDeviceType(int type);

Gets and sets device type (OBU or RSU).

CString& GetLogStateStr();

int GetLoggingState()

SetLoggingState(unsigned short val);

Gets and sets the logging state for a device.

unsigned short GetMessageCount();

CString& GetMsgCountStr();

SetMessageCount(unsigned short val);

Gets and sets the message count that is
incremented by the sender and sent in the
test header of over the air messages.

int GetRssi();

CString& GetRssiStr();

SetRssi(signed short val);

Gets and sets the RSSI for the device’s last
message.

unsigned short GetSenderId();

CString& GetSenderIdStr();

SetSenderId(unsigned short id);

Gets and sets user configured Sender ID.

unsigned char GetTxPower();

SetTxPower(unsigned char val);

Gets and sets the WRM TX power level.

IncMessageCount(); Increments the message count in case of
local device. Not used for remote devices.

bool IsRsu(); Returns true if the object represents an RSU.

bool IsObu(); Returns true if the object represents an OBU.

PrintHeaders(ostream &output, CString prefix);

PrintHeaders(ostream &output);

Prints headers when saving configuration or
logging WaveDeviceInfo attributes. An
optional prefix for custom formatting.

ResetDeviceDefaults(); Sets all values to zero.

friend ostream &operator<<(ostream&, const
CWaveDeviceInfo&);

friend istream &operator>>(istream&,
CWaveDeviceInfo&);

Read/writes this object to a stream. Used for
logging configuration to disk during testing &
writing configuration to disk.

CLocationInfo m_LocationInfo; Current GPS Location information for this
vehicle or intersection (not stopping
locations).

CSignalInfo m_SignalInfo; If this device is an RSU, this object is the
current signal information.

Appendix F 4-23

Method/Attribute Description

CLocationInfo m_TestLocationInfo; Test header version of our location.

CVehicleInfo m_VehicleInfo; If this device is an OBU, this object
represents the current vehicle information.

BYTE m_WrmMacAddr[2]; MAC Address of the WRM connected to the
HD represented by this object.

4.3.1.15 Class CWrmControl

CWrmControl provides WRM transmit and receive capability, with a separate full
time receive thread and an internal packet queue. This class also encapsulates a
single use of the WAVEApi, to provide one point of control for all T9App dialogs
needing access to the local WRM. This is the only object that makes WaveApi
calls. See Table 4-19 for details.

Table 4-19. CWrmControl Methods and Attributes

Method/Attribute Description

bool ConfigLoaded(); Returns whether or not loading
configuration from disk file was successful,
if false, a configuration file was not found.

int GetConfigFromWrm(); Gets configuration from WRM.

CWrmMsg& GetLastSent(); Gets a copy of the last message that was
sent to the WaveApi, used to support
logging.

CWrmMsg& GetNextRx(); Gets the oldest message received from the
WRM from this object's internal message
queue.

int GetRxCount(); Returns received message count.

GetWrmConfig(wrm_configuration_parameters
_type *Config);

Gets the local WRM configuration.

bool InitRxThread(); Initializes and starts WRM message receive
thread.

PrintHeaders(ostream &output); Prints field headers for saving and logging
this objects configurable attributes.

ResetWrm(); Resets WRM via WAVEAPI

static UINT rx_thread(LPVOID pParam); Receive thread.

int
SaveWrmConfig(wrm_configuration_parameter
s_type* Config);

Request the given configuration to be saved
to WRM, via the WAVEApi

void SendUpdate(CWaveDeviceInfo& device); Sends packets over the air.

Appendix F 4-24

Method/Attribute Description

SetDestMacAddress(BYTE *Address); Sets destination MAC address for over the
air messages.

SetWrmConfig(wrm_configuration_parameters
_type* Config);

Sets this objects internal WRM configuration
structure with the passed in one.

StopRxThread(); Stops WRM message receive thread.

friend ostream &operator<<(ostream&, const
CWrmControl&);

Saves and logs this object's configurable
attributes.

friend istream &operator>>(istream&,
CWrmControl&);

Saves and logs this object's configurable
attributes.

CString m_DestIpAddress; Current destination IP address, which is
user configurable.

4.3.1.16 Class CWrmMsg

The CWrmMsg class encapsulates a sent or received WRM message. It creates an
over the air formatted message from a given CWaveDeviceInfo object, or it
creates a CWaveDeviceInfo object from a received over the air message. See
Table 4-20 for details.

Table 4-20. CWrmMsg Methods and Attributes

Method/Attribute Description

int ParseMessage(); Parses a received over the air message
of either OBU or RSU format, and
creates a valid CWaveDeviceInfo object
(accessible with the m_Device attribute) if
successful. Return value is the parsed
size, a value of –1 indicates an error
while parsing.

SetWrmIpAddr(unsigned long IpAddr); Sets the IP address of the receiver of this
message. This value is necessary for
making calibration adjustments to the
RSSI.

CWaveDeviceInfo m_Device; A WAVE device info object created by a
successful call to ParseMessage().

BYTE m_SourceIpString[20]; For a received CWrmMsg object, this is
the sender's IP address, for sends, this
value is undefined.

unsigned short m_Length; Message size, including padding.

ULARGE_INTEGER m_TimeStamp; For a received CWrmMsg object, this
holds the parsed value of the timestamp
encoded by the sender of this message.
For transmit, this value is not used.

Appendix F 4-25

4.4 Data

4.4.1 Structures
This section describes the data structures that are common to T9App classes for control
and message processing functions. Where commonality was identified in messages, these
common structures were created to eliminate redundancy and reduce code size and
processing overhead.

The GPS location structure (Table 4-21) is used in both OBU and RSU messages, and
also in the message headers.

Table 4-21. GPS Location Structure

TGPS_LOCATION

DWORD Longitude;

DWORD Latitude;

WORD AltitudeMsb;

BYTE AltitudeLsb:4;

BYTE Reserved:4;

The test header structure (Table 4-22) contains the data that is prepended onto each RSU
or OBU message.

Table 4-22. Test Header Structure

T_TEST_HEADER

BYTE LengthMsb;

BYTE LengthLsb:4;

BYTE GpsTimeMsb:4;

WORD GpsTimeLsb;

GPS_LOCATION Location;

WORD Heading;

WORD SenderId;

WORD MessageCount;

BYTE TxPower:5;

BYTE LogEnabled:1;

BYTE Reserved:2;

BYTE OsTimeHi;

WORD OsTimeMid;

DWORD OsTimeLow;

Appendix F 4-26

The stopping location structure (Table 4-23) contains the data associated with each
stopping location.

Table 4-23. Stopping Location Structure

T_TS_STOPPING_INFO

GPS_LOCATION Location;

WORD Direction;

BYTE SignalState;

WORD SignalStateTimeLeft;

WORD DurationOfYellowLight;

The common message structure contains the fields that are common to both the OBU and
RSU message bodies (i.e., fields directly following the message header).

Table 4-24. Common Message Structure

T_COMMON_MSG_HEADER

BYTE MessageType;

BYTE TemporaryId[2];

BYTE PrecisionIndicator;

GPS_LOCATION Location;

DWORD UTCTimeMsb;

BYTE UTCTimeLsb;

The OBU VTV message structure (Table 4-25) contains the data for the over the air message.

Table 4-25. OBU VTV Message

T_VTV_MSG

COMMON_MSG_HEADER CommonHeader;

WORD Heading;

WORD Speed;

BYTE LatAccelMsb;

BYTE LatAccelLsb:4;

BYTE LongAccelMsb:4;

BYTE LongAccelLsb;

WORD YawRate;

BYTE ThrottlePos;

Appendix F 4-27

T_VTV_MSG

BYTE BrakeInfo;

WORD SteeringWheelAngle;

BYTE SignalAndControlStatus;

BYTE SystemHealth:4;

BYTE Reserved:4;

BYTE VehicleLengthMsb;

BYTE VehicleLengthLsb:6;

BYTE VehicleWidthMsb:2;

BYTE VehicleWidthLsb;

The RSU TS message structure (Table 4-26) contains the data for the over the air
message.

Table 4-26. RSU TS Message

T_TS_MSG

COMMON_MSG_HEADER CommonHeader;

TS_STOPPING_INFO Sl1Info;

TS_STOPPING_INFO Sl2Info;

TS_STOPPING_INFO Sl3Info;

TS_STOPPING_INFO Sl4Info;

4.4.2 Global Variables
This section describes the list of global scope variables and the rationale for their use.

4.4.2.1 T9App Globals

Table 4-27 lists the global variables/functions used by the T9App.

Table 4-27. T9 App Globals

Function Rationale

Operator << Required to support streams overloading cleanly. Many T9App classes define
global overloaded functions for streams operation. Since this function is called
by methods of the C++ standard lib classes, they need to be global in scope.

Operator >> "

Appendix F 4-28

4.4.2.2 WAVE API Globals

Table 4-28 lists global variables used by the WAVE API Interface
implementation.

Table 4-28. WAVE API Globals

Variable Rationale

AntennaFactorTable The T9App reused code from the WAVE API Tester. The T9App left
the code unchanged for consistency.

MaxTxPowerTable "

FullInList "

4.4.2.3 PCAN USB Globals

Table 4-29 lists global variables used by the PCAN USB.

Table 4-29. PCAN USB Globals

Function Rationale

PCAN_Init g_CAN_Init; Denso copied the implementation from Grid
Connect PCAN example code, which used global
scope variables.

PCAN_Close g_CAN_Close; "

PCAN_Status g_CAN_Status; "

PCAN_Write g_CAN_Write; "

PCAN_Read g_CAN_Read; "

PCAN_VersionInfo
g_CAN_VersionInfo;

"

UnloadDLL "

LoadDLL "

check_err "

GetFunctionAdress "

HINSTANCE g_i_DLL; "

Appendix F 4-29

4.5 Design Goals and Constraints

4.5.1 Design Methodology
The T9App is a 100% object oriented (OO) design, implemented in Microsoft C++.

4.5.2 MFC, Standard Library Usage
The T9App leverages the Microsoft Foundation Classes for its GUI elements, internal
lists, strings, and multi-threading support. The T9App uses standard C/C++ libraries
whenever possible. The T9App uses standard libraries for string operations, time/date
functions, file access, formatting text, and synchronization.

4.5.3 ANSI Compliance
For code that doesn’t use MFC support classes, the code is mostly ANSI C++ compliant,
with the exception of meeting VSCC requirements that the ANSI C++ standard can’t
meet (e.g., high-precision timers, logging / displaying of 64bit data types).

4.5.4 Memory Management
The T9App uses automatic memory management to the extent possible. To avoid memory leaks
or management problems, all classes were designed to include references to objects or the actual
objects statically. Where memory is dynamically allocated, it is encapsulated in objects, and then
control of these objects is passed to standard list classes, so the objects will be automatically
destroyed under normal program termination.

4.5.5 Naming Conventions
The T9App Member variables, function parameters, and local variables were named to
reflect the contents of the data. For example, the variable named m_Width in the
CVehicle class will contain the width of the vehicle the object describes.

4.6 Modifications and Enhancements
This section provides guidance for making enhancements for some expected scenarios.

4.6.1 Changing Over the Air Formats
The CWrmMsg class performs over the air message creation and parsing. Modify the
appropriate message structures, header or body data. These structures are:

4.6.1.1 T_TEST_HEADER

Modify this structure to add or change information in the common message
header that is prepended to each over the air message. Modify the
CWrmMsg::CreateTestHeader() and CWrmMsg::ParseTestHeader() to support
parsing and creation.

Appendix F 4-30

4.6.1.2 T_COMMON_MSG_HEADER

Modify this structure to add or change information in the first fields that are
identical in the OBU and RSU message (e.g., Message Type, Temporary ID).
Modify the CWrmMsg::CreateCommonMsgHeader() and
CWrmMsg::ParseCommonHeader() to support the modified fields.

4.6.1.3 T_VTV_MSG

Modify this structure to add or change information in the OBU V2V message.
Modify the CWrmMsg::ParseVtvMessage() and
CWrmMsg::CreateObuMsgFromDevInfo(). In addition, modifications to the
CVehicleInfo member data may be needed.

4.6.1.4 T_TS_MSG

Modify this structure to add or change the information in the RSU TS message.
Modify the CWrmMsg::CreateRsuMsgFromDevInfo() and
CWrmMsg::ParseVtvMessage(). In addition, modifications to the CSignalInfo
member data may be needed.

4.6.2 Changing Data Logging
To add or modify fields in the log records, modify the both record header and the record
data. For example, to add the logging of a new reception parameter, modify the
CTestLog::LogReceptionParametersLabels() method to add the new field name in the
desired place, and then modify the CTestLog::LogReceptionParameters() method to log
the new field each time a packet is received. Transmit and Receive packets all have the
same system of labels and logging for each record type. (OBUTX, OBURX, RSUTX,
RSURX).

4.6.3 Changing Test Types
The T9App currently supports 3 test types: run for n seconds, run for n transmits, and
passive listener mode. Modify the CTestStatusDialog class, which has methods that
check for test completion using the test type variable. If additional test types are defined,
modify the CTestOptions class and the CTestOptionsGui Class.

4.6.4 Changing T9App Configuration Loading / Saving
Each class has its own global overloaded operators >> and << for loading and saving its
configuration (for all classes that support loading/saving). To load/save additional class
information, add these methods to the overloaded operator definitions to support this.
Each class also has its own field labels function which must be updated so the field labels
for the test log entries and configuration saving are consistent.

Appendix F 4-31

WaveDeviceInfo Example:

Change the stream output global overloaded function:

 friend ostream &operator<<(ostream&, const CWaveDeviceInfo&)

Change the stream input global overloaded function:

 friend istream &operator>>(istream&, CWaveDeviceInfo&);

Change the field labels function:

CWaveDeviceInfo::PrintHeaders

4.6.5 Changing CAN messages
To support additional or modified CAN messages, modify the CCanMsg and
CVehicleInfo classes. The CCanMsg::UpdateVehicle method parses the CAN message
ID, switches on this ID, and calls 1 of 3 different parsing functions,
ProcessVelocityMessage, ProcessAccelMessage, and ProcessDevicesMessage. Modify
the existing parsing function for changes, or add a parsing function for a new CAN
message.

Each CAN message parser has a reference to a vehicle object that it updates with the
contents of the CAN message. Modify the CVehicle class definition to modify or add
storage variables if for the changed data. See the CVehicleInfo class description
(Section 4.3.1.13) for details. If the OBU V2V message must also be modified, see
Section 4.6.1.

Appendix F 5-1

5 Validation Results

5.1 Introduction
This chapter describes the Acceptance Test Plan (ATP) for the Task 9 Application
(T9App) developed in accordance with the requirements in Chapter 2.

5.1.1 Scope
This Task 9 ATP defines the tests Denso conducted to verify compliance with the Task 9
requirements (Chapter 2), the Application Message Specification (Chapter 3), and the
Traffic Signal Interface Specification (Section 6.4). The T9App also complies with the
Wave Radio Module (WRM) Interface Specification [2]. The T9App re-uses the WRM
interface software developed and verified as part of Task 6D. The interface requirements
were not re-verified in this test. Denso submitted a test report with the results of these
tests to the VSCC for approval.

5.2 Test Configurations
This section describes how to connect a host device to a WRM. It also describes the test
setups and initialization procedures required by the tests specified in subsequent sections.

5.2.1 WAVE Radio Module Network Connection
Set up each Host Device (HD) and WRM as shown in Figure 5-1. Each HD and WRM
must have a unique IP address. Configure the HD Internet Protocol (IP) address to
192.168.001.1xx, where xx is the WRM unit number assigned by Denso. Configure each
HD with a Subnet Mask of 255.255.255.000.

5.2.2 Test Setups

5.2.2.1 Generic Test Setup

For all test setups, each HD is connected to its corresponding WRM using an
Ethernet crossover cable. Each HD has the T9App and Ethereal software
installed. Ethereal is a software network analyzer that may be downloaded at no
charge from www.ethereal.com. The test procedures use Ethereal to verify the
contents of the IP packets sent from the HD to the WRM. The WRM is powered
using a wall power supply. Connect HD comm. port 1 to the VSCC supplied
differential GPS (DGPS) using a standard serial cable. Configure the COM1 port
settings to 9600 baud, no parity bit, 8 data bits, 1 stop bit. See Figure 5-1. For
subsequent test setups, the crossover cable is not labeled, and the power supply is
not shown for simplicity.

http://www.ethereal.com/

Appendix F 5-2

HD with
T9App &

Ethereal SW

Power
Supply

Antenna 2 Antenna 1

WRM

Ethernet
Crossover Cable

DGPS

Comm Port 1

RS-232 I/F

Figure 5-1. Generic Test Setup

5.2.2.2 OBU Test Setup

For OBU tests, install a Grid Connect Controller Area Network (CAN) bus
adapter (see www.gridconnect.com for additional information) into the HD USB
port and a second adapter into a laptop hosting the vehicle bus simulator
(VBusSim) software. The VBusSim is a test application developed by Denso to
verify the T9App. It enables the user to specify the CAN bus message contents.
Connect the two adapters with a CAN bus cable. Verify the Peak System CAN
(PCAN) software (supplied by Grid Connect) is installed on the HD. The test
procedures use PCAN to verify the CAN bus message contents. See Figure 5-2.

HD with
T9APP, Ethereal, &

PCANView SW

WRM

Antenna 1Antenna 2
DGPS

Laptop w/
Vehicle Bus

Simulator SW

USB w/CAN
Adapter

Comm Port 1

CAN Bus I/F

RS-232 I/F

Figure 5-2. OBU Test Setup

5.2.2.3 RSU Test Setup

For RBU tests, connect HD comm port 2 to comm port 2 of a laptop hosting the
traffic signal simulator (TrafSigSim) software using a standard serial cable. The
TrafSigSim is a test application developed by Denso to verify the T9App. It
responds to traffic signal queries and enables the user to specify the traffic signal
message contents. Configure both comm ports to 19,200 bps, 8 data bits, no parity

http://www.gridconnect.com/

Appendix F 5-3

bit, and 1 stop bit. The DGPS is not connected for some RSU tests. See
Figure 5-3.

HD with
Task 9 Application

& Ethereal SW

WRM

Antenna 1Antenna 2
DGPS

Laptop w/
Traffic Signal
Simulator SW

RS-232

RS-232

Comm Port 1

Comm Port 2

Comm Port 2

Figure 5-3. RSU Test Setup

5.2.3 Initialization
This section defines the procedures that are used to configure the hardware and software
to a known state prior to starting a test. The tests in subsequent chapters refer to these
procedures when required.

5.2.3.1 OBU and RSU Initialization Procedures

Table 5-1. OBU Initialization Procedure

Description Test Steps Expected Results

Initialize HD. If it is not already running, launch the
T9App.

If it is not already running, launch the
Ethereal application.

The HD displays the T9App
GUI and the Ethereal GUI.

Initialize WRM. On the T9App GUI, select WRM
Configuration. On the WRM
Configuration Screen, select Reset to
WAVE default.

The WRM reboots and the
T9App GUI displays the current
WRM configuration.

Initialize GUI parameters. Initialize the T9App GUI parameters
as described in Sections 5.2.3.2 and
5.2.3.3. Return to the main screen.

GUI displays entered values.

Initialize GPS If its not already running, turn on the
GPS device and configure it up to
output NMEA messages.

GPS device acquires satellite
information and its GUI displays
location information.

1.

Initialize VBusSim
application.

If it is not already running, launch the
VBusSim application on the
connected laptop.

Laptop displays VBusSim GUI.

Appendix F 5-4

Table 5-2. RSU Initialization Procedure

Description Test Steps Expected Results

Initialize HD. If it is not already running, launch the
T9App.

If it is not already running, launch the
Ethereal application.

The HD displays the T9App
GUI and the Ethereal GUI.

Initialize WRM. On the TApp GUI, select WRM
Configuration. On the WRM
Configuration Screen, select Reset to
WAVE default.

The WRM reboots and the Task
9 GUI displays the current
WRM configuration.

Set WRM to RSU mode. On the WRM Configuration Screen,
set the Unit Mode to RSU. Enter OK
to return to the main screen.

Select the WRM Configuration
Screen. Confirm the unit mode is set
to RSU.

Enter OK to return to the main
screen.

The T9App displays the unit
mode as RSU.

Initialize GUI parameters. Initialize the GUI parameters as
described in Sections 5.3, 5.4, and
5.5. Return to the main screen.

GUI displays entered values.

Initialize GPS If its not already running, turn on the
GPS device and configure it up to
output NMEA messages.

GPS device acquires satellite
information and its GUI displays
location information.

1.

Initialize Traffic Signal
Simulator application.

If it is not already running, launch the
Traffic Signal Simulator application on
the connected laptop.

Laptop displays Traffic Signal
Simulator GUI.

5.2.3.2 Communication Parameters Initialization

From the main screen, select Comm Parameters. On the Comm Parameters
screen, set the parameters values as shown in Table 5-3.

Table 5-3. Communication Parameters Initial Values

Parameter Value

Sender ID Set to the last 3 digits of the host IP
address.

Destination IP Address 255.255.255.255

Destination MAC Address FF:FF:FF:FF:FF:FF

Message Interval (ms) 100

Message Size (bytes) 71 (OBU) or 125 (RSU)

GPS Group Enabled (only if GPS is attached)

GPS Baud Rate 9600, N, 8, 1

Appendix F 5-5

Parameter Value

GPS COM Port COM1

Traffic Signal Setup Enabled (RSU) or Disabled (OBU)

Traffic Signal Baud Rate 19200, N, 8, 1

Traffic Signal COM Port COM2

Traffic Signal Polling Rate (ms) 500

CAN Setup Enabled (OBU) or Disabled (RSU)

CAN Baud Rate 500 kbit/s

CAN Init Type STD

5.2.3.3 Test Options Initialization

From the main screen, select Test Options. On the Test Options screen, set the
parameter values as shown in Table 5-4.

Table 5-4. Test Options Initial Values

Parameter Value
Test Control Run for n seconds. Set seconds to 1000.

Logging Enabled (select check box).

Test Name ATP

Log Directory C:\ATP

5.2.3.4 Traffic Signal Information Initialization
From the main screen, select Traffic Signal Information. On the Traffic Signal screen, set the
Intersection # of Lanes to a value of four. Set the remaining parameters values as shown in
Table 5-5.

Table 5-5. Traffic Signal Parameters Initial Values

 Latitude Longitude Yellow Signal

Group Degrees Direction Degrees Direction Altitude Direction Duration Phase

Intersection 90 N 180 E -1000.0 0.0 N/A N/A

Stop Loc 1 45.9999999 N 90.9999999 E 500.01 90.99 0.00 1

Stop Loc 2 0.0000017 N 0.0000017 E 1000.25 180.0 20.001 3

Stop Loc 3 45.5 S 90.5 W 2500.50 -90.55 40.999 6

Stop Loc 4 90 S 180 W 4000.99 -179.99 65.535 8

Appendix F 5-6

5.2.4 Software Builds
Record the WRM software version and the T9App software version in Table 5-6.

Table 5-6. WRM and T9App Software Versions

WRM Software Version T9App Software Version WRM Unit Number Tests

WAVE Radio Module Ver 1.0 Denso WAVEtest V0.1 4, 10, 2, 6 All

5.3 GUI Parameter Tests

5.3.1 WRM Configuration Screen
1. Set up a RSU configuration as described in Section 5.2 (without the GPS receiver

connected) and execute the RSU initialization procedure in Table 5-2.

2. Set up an OBU configuration as described in Section 5.2 and execute the OBU
initialization procedure in Table 5-1.

3. On both the RSU and OBU WRM Configuration Screen, set the Tx power to 0
dBm, and record the WRM MAC address in Table 5-7.

4. Start an Ethereal session on both the RSU and OBU to log Ethernet activity sent
from the HDs to the WRMs.

5. On the T9App main screen for both the RSU and OBU, select start testing.
Record the RSSI value from the Test Display Screen in Table 5-7.

6. Allow the test to run for a minimum of 10 seconds, and then stop testing on both
the RSU and OBU.

7. Stop recording Ethernet activity on the RSU and OBU Ethereal.

8. Open a Telnet session from the RSU and OBU HDs to the associated WRM. Use
a Get RSSI Telnet command to get the RSSI of the last received packet. Verify
these RSSI values match the RSSI values recorded from the GUIs.

9. Open the T9App log file on the RSU and OBU side. Verify the logged values
match the values in Table 5-7 and record the results.

10. Use Ethereal on the RSU and OBU side to verify the IP data fields listed in
Table 5-8 match the values in Table 5-7 and record the results.

11. Repeat steps 3-10 with power settings of 10 dBm, and full power, and record the
results in Table 5-7.

Appendix F 5-7

Table 5-7. WRM Configuration Screen Results

 Expected Results Actual Results

Unit Parameter GUI Log Ethereal GUI Log Ethereal

WRM MAC
Address

MAC
Address

MAC
Address

MAC
Address

86:D9:

FB:B1:

26:1C

Pass Pass

RSSI

(OBU Tx power
setting = 0 dBm)

+/- 2 dB
from RSSI
Telnet
value

+/- 2 dB
from RSSI
Telnet
value

N/A -55 -55 N/A

Telnet Get RSSI

(OBU Tx power
setting = 0 dBm)

 -55

OS Time

(Message
Timestamp)

N/A Increment
s by ~
100,000,0
00 in each
message.

Increment
s by ~
100,000,0
00 in each
message.

N/A Pass Pass

Message Type N/A 0x01 0x01 N/A 0x01 0x01

Temporary ID N/A RSU
WRM
MAC
Address

RSU
WRM
MAC
Address

N/A Pass Pass

RSUTX Tx Power

(setting = 0 dBm)

N/A 0

00000 N/A 0 Pass

OBURX Tx Power

(setting = 0 dBm)

N/A 0

00000 N/A 0 Pass

RSSI

(OBU Tx power
setting = 10 dBm)

+/- 2 dB
from RSSI
Telnet
value

+/- 2 dB
from RSSI
Telnet
value

N/A -44 -44 N/A

Telnet Get RSSI

(OBU Tx power
setting = 10 dBm)

 -45

RSUTX Tx Power

(setting = 10 dBm)

N/A 10 01010 N/A 10 01010

OBURX Tx Power

(setting = 10 dBm)

N/A 10 01010 N/A 10 01010

RSU

RSSI

(OBU Tx power
setting = full)

+/- 2 dB
from RSSI
Telnet
value

+/- 2 dB
from RSSI
Telnet
value

N/A -37 -37 N/A

Appendix F 5-8

 Expected Results Actual Results

Unit Parameter GUI Log Ethereal GUI Log Ethereal

Telnet Get RSSI

(OBU Tx power
setting = full)

 -39

RSUTX Tx Power

(setting = full)

N/A 31 11111 N/A 31 11111

OBURX Tx Power

(setting = full)

N/A 31 11111 N/A 31 11111

WRM MAC
Address

MAC
Address

MAC
Address

MAC
Address

B2:FE:

95:10:

1B:77

Pass Pass

RSSI

(RSU Tx power
setting = 0 dBm)

+/- 2 dB
from RSSI
Telnet
value

+/- 2 dB
from RSSI
Telnet
value

N/A -59 -59 N/A

Telnet Get RSSI

(RSU Tx power
setting = 0 dBm)

 -57

OS Time

(Message
Timestamp)

N/A Increment
s by ~
100,000,0
00 in each
message.

Increment
s by ~
100,000,0
00 in each
message.

N/A Pass Pass

Message Type N/A 0x00 0x00 N/A 0x00 0x00

Temporary ID N/A OBU
WRM
MAC
Address

OBU
WRM
MAC
Address

N/A Pass Pass

OBUTX Tx Power

(setting = 0 dBm)

N/A 0 00000 N/A 0 00000

RSURX Tx Power

(setting = 0 dBm)

N/A 0 00000 N/A 0 00000

RSSI

(RSU Tx power
setting = 10 dBm)

+/- 2 dB
from RSSI
Telnet
value

+/- 2 dB
from RSSI
Telnet
value

N/A -47 -49 N/A

Telnet Get RSSI

(RSU Tx power
setting = 10 dBm)

 -48

OBU

OBUTX Tx Power

(setting = 10 dBm)

N/A 0 01010 N/A 10 01010

Appendix F 5-9

 Expected Results Actual Results

Unit Parameter GUI Log Ethereal GUI Log Ethereal

RSURX Tx Power

(setting = 10 dBm)

N/A 0 01010 N/A 10 01010

RSSI

(RSU Tx power
setting = full)

+/- 2 dB
from RSSI
Telnet
value

+/- 2 dB
from RSSI
Telnet
value

N/A -37 -37 N/A

Telnet Get RSSI

(RSU Tx power
setting = full)

 -39

OBUTX Tx Power

(setting = full)

N/A 31 11111 N/A 31 11111

RSURX Tx Power

(setting = full)

N/A 31 11111 N/A 31 11111

Table 5-8. WRM Configuration Data Elements

Data Element
Length
(bits)

IP Data Frame
Byte #

IP Data Frame
Bits

OS Time 56 23-29 All

Message Type 8 30 1-8

Temporary ID 48 31-36 All

Tx Power of Sender 5 22 1-5

5.3.2 Comm Parameters Screen
1. Set up a RSU configuration as described in Section 5.2.2.3 (without the GPS

receiver connected) and execute the RSU initialization procedure in Table 5-2.

2. Set up an OBU configuration as described in Section 5.2.2.2 and execute the OBU
initialization procedure in Table 5-1.

5.3.2.1 Comm Parameters Screen Low-Value Tests

1. On both the RSU and OBU Comm Parameters Screen, set the values as shown
in Table 5-9 and enter OK.

2. Start an Ethereal session on both the RSU and OBU to log Ethernet activity
sent from the HDs to the WRMs.

3. On the T9App main screen for both the RSU and OBU, select start testing.

4. Verify the GUI values match the values in Table 5-10 and record the results.

5. Allow the test to run for a minimum of 10 seconds, and then stop testing on
both the RSU and OBU.

Appendix F 5-10

6. Stop recording Ethernet activity on both the RSU and OBU Ethereal.

7. Open the T9App log file on the RSU and OBU (Rx) side. Verify the logged
values match the values in Table 5-10 and record the results.

8. Use Ethereal (on the RSU-side HD) to verify the RSU Traffic Signal Message
IP data fields listed in Table 5-11 match the values in Table 5-10 and record
the results. (Note: The Destination IP Address is part of the IP Frame, and the
number of bytes for the Message Size must be counted.)

Table 5-9. Comm Parameters Screen Low Parameter Values

Parameter Value
Destination IP Address IP Address of other HD

Message Interval (msec) 10

Message Size (Bytes) 71 (OBU) or 125 (RSU)

Sender ID 0 (OBU) or 1 (RSU)

Table 5-10. Comm Parameters Screen Low Parameter Results

 Expected Results Actual Results

Unit Parameter GUI Log Ethereal GUI Log Ethereal

Destination IP
Address

N/A N/A OBU IP
Address

N/A N/A Pass

Message Interval N/A ~100
RSUTX
entries/se
c

N/A N/A 100 msgs
in 1.046
seconds

N/A

Packet Length N/A 125
(RSUTX)

71
(OBURX)

0x07D N/A 125

71

0x07D

0x047

Message Size N/A N/A 125
bytes

N/A N/A 125

RSU

Sender ID 1 (RSU)

0 (OBU)

1
(RSUTX),

0
(OBURX)

0x0001 1

0

1

0

0x0001

0x0000

Destination IP
Address

N/A N/A RSU IP
Address

N/A N/A Pass OBU

Message Interval N/A ~100
OBUTX
entries/se
c

N/A N/A 100 msgs
in 1.044
seconds

N/A

Appendix F 5-11

 Expected Results Actual Results

Unit Parameter GUI Log Ethereal GUI Log Ethereal

Packet Length N/A 71
(OBUTX)

125
(RSURX)

0x047 N/A 71

125

0x047

0x07D

Message Size N/A N/A 71 bytes N/A N/A 71

Sender ID 0 (OBU)

1 (RSU)

0
(OBUTX)

1
(RSURX)

0x0000 0

1

0

1

0x0000

0x0001

Table 5-11. Comm Parameters Screen Data Elements

Data Element
Length
(bits)

IP Data Frame
Byte #

IP Data Frame
Bits

1 1-8 Packet Length 12

2 1-4

Sender ID 16 18-19 All

5.3.2.2 Comm Parameters Screen Mid-Value Tests

1. Repeat step 1 of Section 5.3.2.1, using the Comm Parameter Values in
Table 5-12.

2. Repeat steps 2-8 of Section 5.3.2.1, verifying the values and recording the
results in Table 5-13.

Table 5-12. Comm Parameters Screen Mid-Parameter Values

Parameter Value
Destination IP Address 255.255.255.255

Message Interval (msec) 100

Message Size (Bytes) 500

Sender ID 255 (OBU) or 256 (RSU)

Appendix F 5-12

Table 5-13. Comm Parameters Screen Mid-Parameter Results

 Expected Results Actual Results

Unit Parameter GUI Log Ethereal GUI Log Ethereal

Destination IP
Address

N/A N/A 255.255.

255.255

N/A N/A 255.255.

255.255

Message Interval N/A ~10 RSUTX
entries/sec

N/A N/A 10 msgs
in 0.902
seconds

N/A

Packet Length N/A 500
(RSUTX)

500
(OBURX)

0x1F4 N/A 500

500

0x1F4

Message Size N/A N/A 500 bytes N/A N/A 500

RSU

Sender ID 256 (RSU)

255 (OBU)

256
(RSUTX)

255
(OBURX)

0x0100 256

255

256

255

0x0100

0x00FF

Destination IP
Address

N/A N/A 255.255.

255.255

N/A N/A 255.255.

255.255

Message Interval N/A ~10 OBUTX
entries/sec

N/A N/A 10 msgs
in 0.908
seconds

N/A

Packet Length N/A 500
(OBUTX)

500
(RSURX)

0x1F4 N/A 500

500

0x1F4

Message Size N/A N/A 500 bytes N/A N/A 500

OBU

Sender ID 255 (OBU)

256 (RSU)

255
(OBUTX)

256
(RSURX)

0x00FF 255

256

255

256

0x00FF

0x0100

5.3.2.3 Comm Parameters Screen High-Value Tests

1. Repeat step 1 of Section 5.3.2.1, using the Comm Parameter Values in Table
5-14.

2. Repeat steps 2-8 of Section 5.3.2.1, verifying the values and recording the
results in Table 5-15.

Appendix F 5-13

Table 5-14. Comm Parameters Screen High-Parameter Values

Parameter Value
Destination IP Address 255.255.255.255

Message Interval (msec) 1000

Message Size (Bytes) 1200

Sender ID 65534 (OBU) or 65535 (RSU)

Table 5-15. Comm Parameters Screen High-Parameter Results

 Expected Results Actual Results

Unit Parameter GUI Log Ethereal GUI Log Ethereal

Destination IP
Address

N/A N/A 255.255.

255.255

N/A N/A 255.255.

255.255

Message
Interval

N/A ~1 RSUTX
entry/sec

N/A N/A 1.000
msgs/sec

N/A

Packet Length N/A 1200
(RSUTX)

1200
(OBURX)

0x4B0 N/A 1200

1200

0x4B0

Message Size N/A N/A 1200 bytes N/A N/A 1200

RSU

Sender ID 65535
(RSU)

65534
(OBU)

65535
(RSUTX)

65534
(OBURX)

0xFFFF 65535

65534

65535

65534

0xFFFF

0xFFFE

Destination IP
Address

N/A N/A 255.255.

255.255

N/A N/A 255.255.

255.255

Message
Interval

N/A ~1 OBUTX
entry/sec

N/A N/A 1.000
msgs/sec

N/A

Packet Length N/A 1200
(OBUTX)

1200
(RSURX)

0x4B0 N/A 1200

1200

0x4B0

Message Size N/A N/A 1200 bytes N/A N/A 1200

OBU

Sender ID 65534
(OBU)

65535
(RSU)

65534
(OBUTX)

65535
(RSURX)

0xFFFE 65534

65535

65534

65535

0xFFFE

0xFFFF

Appendix F 5-14

5.3.3 Test Options Screen
1. Set up a RSU configuration as described in Section 5.2.2.3 (without the GPS

receiver connected) and execute the RSU initialization procedure in Table 5-2.

2. Set up an OBU configuration as described in Section 5.2.2.2 and execute the OBU
initialization procedure in Table 5-1.

3. On both the RSU and OBU Test Options Screen, set the values as shown in Case
1 of Table 5-16 and enter OK.

4. Start an Ethereal session to log Ethernet activity between the RSU HD and the
WRM.

5. On the T9App main screen for both the RSU and OBU, select start testing.

6. While the test is running, hit the Pause button on both the RSU and OBU.

7. Verify the message counts stop incrementing on both the RSU and OBU GUI.

8. Verify Ethereal is not detecting messages being sent or received.

9. Once the test has been paused for at least 5 seconds, hit the Resume button on the
RSU and OBU.

10. Verify the GUI values match the values Table 5-17 and record the results.

11. For Test Case 1 and 2, wait until the test completes. For Test Case 3, wait 80
seconds and then hit the Quit button on both the RSU and OBU.

12. Stop recording Ethernet activity on Ethereal.

13. Open the T9App log file on the RSU and OBU side. Verify the logged values
match the values in Table 5-17 and record the results.

14. Use Ethereal to view the IP data fields listed in Table 5-18 and verify the fields
match the values in Table 5-17 and record the results.

15. Repeat steps 3-11 for Cases 2 and 3 in Table 5-16 and record the results in
Table 5-19 and Table 5-20.

Table 5-16. Test Options Screen Parameter Values

 Values

Parameter Case 1 Case 2 Case 3
Test Control Run for n sent

messages. Set # of
messages to 1000.

Run for n seconds.
Set # of seconds to
50.

Run for n seconds.
Set # of seconds to
100.

Logging Enabled Enabled Disabled

Test Name ATP ATP N/A

Log Directory C:\ATP C:\ATP N/A

Appendix F 5-15

Table 5-17. Test Options Screen Case 1 Results

 Expected Results Actual Results

Unit Parameter GUI Log Ethereal GUI Log Ethereal

Message Count
(test running)

Increments
from 1 to # of
messages
sent or
received.

RSUTX and
OBURX
increments
from 1 to # of
messages
sent or
received.

Increments
from 1 to # of
messages sent

Pass Pass Pass

Message Count

(test paused)

Message
counts stop
incrementing.

N/A No messages
being sent.

Pass N/A Pass

Test Run Last test run #
+ 1.

N/A N/A Pass N/A N/A

Messages Sent 1000 N/A N/A Pass N/A N/A

Seconds elapsed ~100 N/A N/A 99 N/A N/A

Log N/A 1 1 N/A 1 1

RSU

Logfile name N/A c:\ATP\ATP_[
test
run]_mmddyy
yy.txt

N/A N/A Pass N/A

Message Count
(test running)

Increments
from 1 to # of
messages
sent or
received.

OBUTX and
RSURX
increments
from 1 to # of
messages
sent or
received.

Increments
from 1 to # of
messages sent

Pass Pass Pass

Message Count

(test paused)

Message
counts stop
incrementing.

N/A No messages
being sent.

Pass N/A Pass

Test Run Last test run #
+ 1.

N/A N/A Pass N/A N/A

Messages Sent 1000 N/A N/A Pass N/A N/A

Seconds elapsed ~100 N/A N/A 99 N/A N/A

Log N/A 1 1 N/A 1 1

OBU

Logfile name N/A c:\ATP\ATP_[
test
run]_mmddyy
yy.txt

N/A N/A Pass N/A

Appendix F 5-16

Table 5-18. Test Options Data Elements

Data Element
Length
(bits)

IP Data Frame
Byte #

IP Data Frame
Bits

Message Count 16 20-21 All

Log 1 22 6

Table 5-19. Test Options Screen Case 2 Results

 Expected Results Actual Results

Unit Parameter GUI Log Ethereal GUI Log Ethereal

Message Count
(test running)

Increments
from 1 to #
of messages
sent or
received.

RSUTX and
OBURX
increments
from 1 to # of
messages sent
or received.

Increments
from 1 to # of
messages sent

Pass Pass Pass

Message Count

(test paused)

Message
counts stop
incrementing
.

N/A No messages
being sent.

Pass N/A Pass

Test Run Last test run
+ 1.

N/A N/A Pass N/A N/A

Messages Sent ~500 N/A N/A 499 N/A N/A

Seconds
elapsed

50 N/A N/A 50 N/A N/A

Log N/A 1 1 N/A 1 1

RSU

Logfile name N/A c:\ATP\ATP_[t
est
run]_mmddyyy
y.txt

N/A N/A Pass N/A

Message Count
(test running)

Increments
from 1 to #
of messages
sent or
received.

OBUTX and
RSURX
increments
from 1 to # of
messages sent
or received.

Increments
from 1 to # of
messages sent

Pass Pass Pass

Message Count

(test paused)

Message
counts stop
incrementing
.

N/A No messages
being sent.

Pass N/A Pass

Test Run Last test run
+ 1.

N/A N/A Pass N/A N/A

Messages Sent ~500 N/A N/A 499 N/A N/A

Seconds
elapsed

50 N/A N/A 50 N/A N/A

OBU

Log N/A 1 1 N/A 1 1

Appendix F 5-17

 Expected Results Actual Results

Unit Parameter GUI Log Ethereal GUI Log Ethereal

Logfile name N/A c:\ATP\ATP_[t
est
run]_mmddyyy
y.txt

N/A N/A Pass N/A

Table 5-20. Test Options Screen Case 3 Results

 Expected Results Actual Results

Unit Parameter GUI Log Ethereal GUI Log Ethereal

Message Count Increments
from 1 to # of
messages
sent or
received.

N/A Increments from
1 to # of
messages sent

Pass N/A Pass

Test Run “N/A” N/A N/A “N/A” N/A N/A

Messages Sent ~800 N/A N/A Pass N/A N/A

Seconds
elapsed

80 N/A N/A 80 N/A N/A

Log N/A N/A 0 N/A N/A 0

RSU

Logfile name N/A No logfile
generated

N/A N/A Pass N/A

Message Count Increments
from 1 to # of
messages
sent or
received.

N/A Increments from
1 to # of
messages sent

Pass N/A Pass

Test Run “N/A” N/A N/A “N/A” N/A N/A

Messages Sent ~800 N/A N/A Pass N/A N/A

Seconds
elapsed

80 N/A N/A Pass N/A N/A

Log N/A N/A 0 N/A N/A 0

OBU

Logfile name N/A No logfile
generated

N/A N/A Pass N/A

5.3.4 Traffic Signal Information Screen
1. Set up a RSU configuration as described in Section 5.2.2.3 (without the GPS

receiver connected) and execute the RSU initialization procedure in Table 5-2.

2. Set up an OBU configuration as described in Section 5.2.2.2 and execute the OBU
initialization procedure in Table 5-1.

3. Start an Ethereal session to log Ethernet activity between the RSU HD and the
WRM.

Appendix F 5-18

4. On the T9App main screen for both the RSU and OBU, select start testing.

5. Verify the GUI values match the values in Table 5-21 for RSU (Tx) and OBU
(Rx) sides, and record the results.

6. Allow the test to run for a minimum of 5 seconds, and then stop testing on both
the RSU and OBU.

7. Stop recording Ethernet activity on Ethereal.

8. Open the T9App log file on the RSU (Tx) and OBU (Rx) side. Verify the logged
values match the values in Table 5-21 and record the results.

9. Use Ethereal (on the RSU-side HD) to view the RSU Traffic Signal Message IP
data fields listed in Table 5-22. Verify the fields match the values in Table 5-21
and record the results.

Table 5-21. Traffic Signal Information Screen Results

 Expected Results Actual Results

Group Parameter

GUI Log Ethereal Tx GUI Tx Log Ethereal Rx
GUI Rx Log

Latitude 90.0 90.0 0x35A4E900 90 90 Pass 90 90

Longitude 180.0 180.0 0x6B49D200 180 180 Pass 180 180

Altitude N/A -1000.0 0x00000 N/A -1000 Pass N/A -1000

Intersection

Number of
Lanes

N/A 4 N/A N/A 4 N/A N/A N/A

Latitude N/A 45.9999
999

0x1B6B0AFF N/A 45.999999
9

Pass N/A 45.9999
999

Longitude N/A 90.9999
999

0x363D7F7F N/A 90.999999
9

Pass N/A 90.9999
999

Altitude N/A 500.01 0x249F1 N/A 500.01 Pass N/A 500.01

Direction N/A 90.99 0x238B N/A 90.99 Pass N/A 90.99

Stop Loc 1

Yellow
Duration

N/A 0.0 0x0000 N/A 0 Pass N/A 0

Latitude N/A 0.00000
17

0x00000011 N/A 0.0000017 Pass N/A 0.00000
17

Longitude N/A 0.00000
17

0x00000011 N/A 0.0000017 Pass N/A 0.00000
17

Altitude N/A 1000.25 0x30D59 N/A 1000.25 Pass N/A 1000.25

Direction N/A 180.0 0x4650 N/A 180 Pass N/A 180

Stop Loc 2

Yellow
Duration

N/A 20.001 0x4E21 N/A 20.001 Pass N/A 20.001

Latitude N/A -45.5 0xE4E14040 N/A -45.5 Pass N/A -45.5

Longitude N/A -90.5 0xCA0ECBC0 N/A -90.5 Pass N/A -90.5

Stop Loc 3

Altitude N/A 2500.50 0x55762 N/A 2500.5 Pass N/A 2500.5

Appendix F 5-19

 Expected Results Actual Results

Group Parameter

GUI Log Ethereal Tx GUI Tx Log Ethereal Rx
GUI Rx Log

Direction N/A -90.55 0xDCA1 N/A -90.55 Pass N/A -90.55

Yellow
Duration

N/A 40.999 0xA027 N/A 40.999 Pass N/A 40.999

Latitude N/A -90.0 0xCA5B1700 N/A -90 Pass N/A -90

Longitude N/A -180.0 0x94B62E00 N/A -180 Pass N/A -180

Altitude N/A 4000.99 0x7A183 N/A 4000.99 Pass N/A 4000.99

Direction N/A -179.99 0xB9B1 N/A -179.99 Pass N/A -179.99

Stop Loc 4

Yellow
Duration

N/A 65.535 0xFFFF N/A 65.535 Pass N/A 65.535

Table 5-22. Traffic Signal Message Data Elements

Data Element Length (bits)
IP Data Frame
Byte #

IP Data Frame
Bits

Longitude 32 38-41 All

Latitude 32 42-45 All

46-47 All

Intersection

Altitude 20

48 1-4

Longitude 32 54-57 All

Latitude 32 58-61 All

62-63 All Altitude 20

64 1-4

Direction 16 65-66 All

Stop Loc 1

Yellow
Duration

16 70-71 All

Longitude 32 72-75 All

Latitude 32 76-79 All

80-81 All Altitude 20

82 1-4

Direction 16 83-84 All

Stop Loc 2

Yellow
Duration

16 88-89 All

Appendix F 5-20

Data Element Length (bits)
IP Data Frame
Byte #

IP Data Frame
Bits

Longitude 32 90-93 All

Latitude 32 94-97 All

98-99 All Altitude 20

100 1-4

Direction 16 101-102 All

Stop Loc 3

Yellow
Duration

16 106-107 All

Longitude 32 108-111 All

Latitude 32 112-115 All

116-117 All Altitude 20

118 1-4

Direction 16 119-120 All

Stop Loc 4

Yellow
Duration

16 124-125 All

5.3.5 Test Display Screen

5.3.5.1 Distance Calculation, OBU Heading Test

1. Set up a RSU configuration as described in Section 5.2.2.3 (without the GPS
receiver connected) and execute the RSU initialization procedure in Table 5-2.

2. Set up an OBU configuration as described in Section 5.2.2.2 and execute the
OBU initialization procedure in Table 5-1.

3. Record the GPS device readings in Table 5-23.

4. On the RSU Traffic Signal Parameters screen, set the intersection location
values as shown in Case 1 of Table 5-24.

5. Calculate the distance between the RSU and OBU side by entering the GPS
readings as the source, and the RSU Traffic Signal Intersection Location as
the destination on the web site http://jan.ucc.nau.edu/~cvm/latlongdist.html.

6. On the T9App main screen for both the RSU and OBU, select start testing.

7. Verify the GUI values match the values in Table 5-25 and record the results.

8. Stop the test.

9. Open the T9App log file on the RSU and OBU side. Verify the logged values
match the values in Table 5-25 and record the results.

10. Repeat steps 4-9 for Cases 2 and 3 in Table 5-24 and record the results in
Table 5-25.

Appendix F 5-21

Table 5-23. Distance, Heading Test GPS Data

Parameter GPS Device Readings

Longitude -117.2275

Latitude 33.1333

Altitude 161.7 m

Table 5-24. Distance, Heading Test Parameter Values

 Values
Parameter
Group Parameter Case 1 Case 2 Case 3

Latitude Same as GPS
latitude reading

GPS latitude
reading + 0.0003
degrees

GPS latitude
reading - 0.0015
degrees

Longitude Same as GPS
longitude reading

GPS longitude
reading + 0.0003
degrees

GPS longitude
reading - 0. 0015
degrees

RSU Traffic
Signal
Intersection
Location

Altitude Same as GPS
altitude reading

Same as GPS
altitude reading

Same as GPS
altitude reading

Table 5-25. Distance, Heading Test Results

 Expected Results Actual Results

Test
Case Parameter GUI Log RSU

GUI
RSU
Log

OBU
GUI

OBU
Log

Distance to Sender as calculated by
web site

0

Distance to
Sender

Same as web
site +/- 5 meters.

Same as web
site +/- 5 meters.

4.3 m 4.3 m 4.3m 4.3 m

1

OBU Heading Fluctuating Value Fluctuating Value Pass Pass N/A N/A

Distance to Sender as calculated by
web site

43.6 m 2

Distance to
Sender

Same as web
site +/- 5 meters.

Same as web
site +/- 5 meters.

43.1 m 43.1 m 43.1 m 43.1 m

Distance to Sender as calculated by
web site

217.8 m 3

Distance to
Sender

Same as web
site +/- 5 meters.

Same as web
site +/- 5 meters.

218.5 m 218.5 m 218.5 m 218.5 m

Appendix F 5-22

5.3.5.2 RSU – RSU Bearing Test

1. Set up a RSU configuration as described in Section 5.2.2.3 (with the GPS
receiver connected) and execute the RSU initialization procedure in Table 5-2.

2. Set up a second RSU configuration as described in Section 5.2.2.3 (without
the GPS receiver connected) and execute the RSU initialization procedure in
Table 5-2.

3. Record the GPS device readings in Table 5-26.

4. On the RSU #2 Traffic Signal Parameters screen, set the intersection location
values as shown in Case 1 of Table 5-27.

5. Calculate the bearing between the RSUs using the Excel spreadsheet
Task9Bearing.xls (spreadsheet generated by Denso). Enter the GPS readings
for RSU #1, and the RSU Traffic Signal Intersection Location for RSU # 2 in
Table 5-28.

6. On the T9App main screen for both the RSUs, select start testing.

7. Verify the GUI values match the values Table 5-28 and record the results.

8. Stop the test.

9. Open the T9App log file for both RSUs. Verify the logged values match the
values in Table 5-28 and record the results.

10. Repeat steps 3-9 for Cases 2, 3, and 4 in Table 5-27 and record the results in
Table 5-28.

Table 5-26. RSU – RSU Bearing Test GPS Data

Parameter GPS Device Readings

Longitude -117.2275

Latitude 33.1333

Altitude 161.7 m

Table 5-27. RSU – RSU Bearing Test Parameter Values

 Value
Parameter
Group Parameter Case 1 Case 2 Case 3 Case 4

Latitude GPS latitude
reading +
0.0015
degrees

Same as GPS
latitude reading

GPS latitude
reading + 0.0015
degrees

GPS latitude
reading -0.0015
degrees

RSU Traffic
Signal
Intersection
Location

Longitude Same as GPS
longitude
reading

GPS longitude
reading + 0.0015
degrees

GPS longitude
reading + 0.0015
degrees

GPS longitude
reading -0.0015
degrees

Appendix F 5-23

 Value
Parameter
Group Parameter Case 1 Case 2 Case 3 Case 4

Altitude Same as GPS
altitude
reading

Same as GPS
altitude reading

Same as GPS
altitude reading

Same as GPS
altitude reading

Table 5-28. RSU – RSU Bearing Test Results

 Expected Results Actual Results

Test
Case Parameter GUI Log GUI Log

Bearing from RSU #1 to RSU #2
calculated by spreadsheet.

0

Bearing from RSU #2 to RSU #1
calculated by spreadsheet.

180

RSU # 1
display/log

Same as
spreadsheet
+/- 2 degrees.

Same as
spreadsheet +/-
2 degrees.

-0.7 -0.7

1

RSU # 2
display/log

Same as
spreadsheet
+/- 2 degrees.

Same as
spreadsheet +/-
2 degrees.

179.3 179.3

Bearing from RSU #1 to RSU #2
calculated by spreadsheet.

-90

Bearing from RSU #2 to RSU #1
calculated by spreadsheet.

90

RSU # 1
display/log

Same as
spreadsheet
+/- 2 degrees.

Same as
spreadsheet +/-
2 degrees.

-91.4 -91.4

2

RSU # 2
display/log

Same as
spreadsheet
+/- 2 degrees.

Same as
spreadsheet +/-
2 degrees.

88.6 88.6

Bearing from RSU #1 to RSU #2
calculated by spreadsheet.

-39.9

Bearing from RSU #2 to RSU #1
calculated by spreadsheet.

140.1

RSU # 1
display/log

Same as
spreadsheet
+/- 2 degrees.

Same as
spreadsheet +/-
2 degrees.

-41.1 -41.1

3

RSU # 2
display/log

Same as
spreadsheet
+/- 2 degrees.

Same as
spreadsheet +/-
2 degrees.

138.9 138.9

4 Bearing from RSU #1 to RSU #2
calculated by spreadsheet.

140.1

Appendix F 5-24

 Expected Results Actual Results

Test
Case Parameter GUI Log GUI Log

Bearing from RSU #1 to RSU #2
calculated by spreadsheet.

-39.9

RSU # 1
display/log

Same as
spreadsheet
+/- 2 degrees.

Same as
spreadsheet +/-
2 degrees.

141.2 141.2

RSU # 2
display/log

Same as
spreadsheet
+/- 2 degrees.

Same as
spreadsheet +/-
2 degrees.

-38.8 -38.8

5.3.5.3 OBU – OBU Relative Heading Test

1. Set up an OBU configuration (with a GPS connected) as described in
Section 5.2.2.2 and execute the OBU initialization procedure in Table 5-1.

2. Set up a second OBU configuration (without a GPS connected) as described in
Section 5.2.2.2 and execute the OBU initialization procedure in Table 5-1.

3. On the OBU # 1 VBusSim GUI, set the CAN bus message parameters as
shown in Case 1 of Table 5-29.

4. On the T9App main screen for both OBUs, select start testing.

5. Verify the OBU # 1 GUI values match the values in Table 5-30 and record the
results.

6. Stop the test.

7. Repeat steps 3-6 for Cases 2 and 3 in Table 5-29 and record the results in
Table 5-30.

Table 5-29. OBU – OBU Relative Heading Test Parameters

 Values
Parameter
Group Parameter Case 1 Case 2 Case 3

Vehicle
Speed

5.00 m/s 5.01 m/s 400.00 m/s OBU Vehicle
Velocity
Message Vehicle

Speed
Availability

1 1 1

Appendix F 5-25

Table 5-30. OBU – OBU Relative Heading Test Results

 Expected Results Actual Results

Test
Case Parameter GUI GUI

1 OBU 1 relative
heading to OBU
2

0 “N/A”

2 OBU 1 relative
heading to OBU
2

Fluctuating Value Fluctuating Value

3 OBU 1 relative
heading to OBU
2

Fluctuating Value Fluctuating Value

5.3.6 GUI Configuration Recording, Persistence
1. Set up a RSU configuration as described in Section 5.2.2.3 (without the GPS

receiver connected) and execute the RSU initialization procedure in Table 5-2.

2. Set up an OBU configuration as described in Section 5.2.2.2 and execute the OBU
initialization procedure in Table 5-1.

3. On the T9App main screen for both the RSU and OBU, select start testing.

4. Allow the test to run for a minimum of 5 seconds, and then stop testing on both
the RSU and OBU.

5. Open the T9App log file on the RSU (Tx) and OBU (Rx) side. Verify the logged
values in the Config entries match the values in Table 5-31 and record the results.

6. Close the T9App and cycle power on both the RSU and OBU HDs. Re-open the
T9App on both the RSU and OBU.

7. Repeat steps 3-5 and record the results in Table 5-31.

Appendix F 5-26

Table 5-31. GUI Configuration Recording, Persistence Results

 Expected Results Actual Results

Test Step Screen Log RSU Log OBU Log

Communication Parameters See Table 5-3. Pass Pass

Test Options See Table 5-4. Pass Pass

5

Traffic Signal Parameters See Table 5-5. Pass All zeros

Communication Parameters See Table 5-3. Pass Pass

Test Options See Table 5-4. Pass Pass

7

Traffic Signal Parameters See Table 5-5. Pass All zeros

5.4 Interface Tests

5.4.1 GPS Receiver Interface Tests

5.4.1.1 Common Message Header – GPS Data Tests

1. Set up an OBU configuration as described in Section 5.2.2.2 and execute the
OBU initialization procedure in Table 5-1, without launching the VBusSim
application.

2. Start the GPS and allow it to acquire satellite information and update its
display.

3. Record the GPS device readings in Table 5-32.

4. Start an Ethereal session to log Ethernet activity between the HD and the
WRM.

5. On the OBU T9App main screen, select start testing.

6. Allow the T9App test to run for at least 5 seconds.

7. Stop recording Ethernet activity on Ethereal.

8. Convert the time recorded on the GPS device to the number of seconds since
the start of the week. Convert this value to hex to verify the “GPS seconds in
week” value captured by Ethereal.

9. Use Ethereal to view the IP data fields indicated in Table 5-33 and record the
values. Convert the hex values to decimal and verify the data corresponds to
the GPS device values in Table 5-32. Record the results.

Appendix F 5-27

Table 5-32. Common Message Header GPS Data Test Results

Parameter
GPS Device
Readings

Ethereal Results
(decimal)

Longitude -117.2275 -1163886040

Latitude 33.1333 331333293

Altitude 162.5m 116250

Time 21:24:50 249906

Table 5-33. Common Message Header GPS Data Elements

Data
Element

Length
(bits)

IP Data Frame
Byte #

IP Data Frame
Bits

Value

(Hex)

2 5-8 0x3 GPS
Seconds in
Week

20

3-4 All 0xD032

Longitude 32 5-8 All 0XBA208228

Latitude 32 9-12 All 0x13BFBEAD

13-14 All 0x1C61 Altitude 20

15 1-4 0xA

5.4.1.2 OBU GPS Interface Tests

1. Set up a RSU configuration as described in Section 5.2.2.3, without the GPS
receiver connected. Execute the RSU initialization procedure in Table 5-2,
without launching Ethereal or TrafSigSim applications.

2. Set up an OBU configuration as described in Section 5.2.2.2 and execute the
OBU initialization procedure in Table 5-1, without launching the VBusSim
application.

3. Start the GPS and allow it to acquire satellite information and update its
display.

4. Record the GPS device readings in Table 5-34.

5. Start an Ethereal session to log Ethernet activity between the OBU HD and
the OBU WRM.

6. On the T9App main screen for both RSU and OBU, select start testing.

7. Allow the test to run for at least 5 seconds.

8. Stop recording Ethernet activity on Ethereal.

9. Open the T9App log file on the OBU side and verify the logged GPS values
match the values recorded by the GPS device. Verify the logged values in
both the OBUTX entries and the RSURX log entries. In the OBUTX entries,

Appendix F 5-28

the GPS data is logged as the transmitted data. In the RXURX entries, the
GPS data is logged as the receiver information. Record the results in
Table 5-34.

10. Use Ethereal (on the OBU HD) to view the IP data fields indicated in
Table 5-35 and record the values. Convert the hex values to decimal and
verify the data corresponds to the GPS device values in Table 5-34. Record
the results.

11. Convert the time recorded on the GPS device to the number of seconds since
the start of the week. Use this calculated value to verify the OBU and RSU
logged values for GPS seconds in the week. Convert this value to hex to
verify the GPS seconds in the week value sent from the OBU, as captured by
Ethereal.

12. Open the T9App log file on the RSU side and verify the logged GPS values in
the OBURX entries match the values recorded by the GPS device. Record the
results in Table 5-34.

Table 5-34. OBU GPS Interface Test Results

 Actual Results

 OBU Log

Parameter
GPS Device
Readings OBUTX RSURX Ethereal

RSU Log
OBURX

Longitude -117.2275 -117.2275 180 1172274637 -117.2275

Latitude 33.1333 33.1333 90 331333189 33.1333

Altitude 163.3 m 163.3 -1000 116330 163.3

Time 02:37:59 268679 268679 268679 268679

Table 5-35. OBU V2V Safety Message GPS Data Elements

Data
Element

Length
(bits)

IP Data Frame
Byte #

IP Data Frame
Bits

Value (Hex)

Longitude 32 38-41 All 0xBA20820F

Latitude 32 42-45 All 0x13BFBE45

46-47 All 0x1C66 Altitude 20

48 1-4 0xA

2 5-8 0x4 # of
seconds in
week

40

3-4 All 0x1987

Appendix F 5-29

5.4.1.3 RSU GPS Interface Tests

1. Set up a RSU configuration as described in Section 5.2.2.3 and execute the
RSU initialization procedure in Table 5-2, without launching the Ethereal
application.

2. Set up an OBU configuration as described in Section 5.2.2.2 without the GPS
receiver connected. Execute the OBU initialization procedure in Table 5-1,
without launching Ethereal or VBusSim applications.

3. Start the GPS and allow it to acquire satellite information and update its
display.

4. Record the GPS device readings in Table 5-36.

5. Start an Ethereal session to log Ethernet activity between the RSU HD and the
RSU WRM.

6. On the T9App main screen for both RSU and OBU, select start testing.

7. Review the T9App GUI on both the RSU and OBU to verify the RSU
longitude and latitude values match the values recorded by the GPS device.
Record the results in Table 5-36.

8. Allow the test to run for at least 5 seconds.

9. Stop recording Ethernet activity on Ethereal.

10. Open the T9App log file on the RSU side and verify the logged GPS values in
both the RSUTX and OBURX entries match the values recorded by the GPS
device. In the RSUTX entries, the GPS data is logged as the transmitted data.
In the OBURX entries, the GPS data is logged as the receiver information.
Record the results in Table 5-36.

11. Use Ethereal (on the RSU HD) to view the IP data fields indicated in
Table 5-37 and record the values. Convert the hex values to decimal and
verify the data corresponds to the GPS device values in Table 5-36. Record
the results.

12. Convert the time recorded on the GPS device to the number of seconds since
the start of the week. Use this calculated value to verify the OBU and RSU
logged values for GPS seconds in the week. Convert this value to hex to
verify the GPS seconds in the week value sent from the OBU, as captured by
Ethereal.

13. Open the T9App log file on the OBU side and verify the logged GPS values in
the RSURX entries match the values recorded by the GPS device. Record the
results in Table 5-36.

Appendix F 5-30

Table 5-36. RSU GPS Interface Test Results

 Actual Results

Parameter
GPS Device
Readings RSU GUI RSU Log Ethereal RSU GUI

RSU Log

(RSURX)

Longitude -117.2275 -117.2275 -117.2275 1172274755 -117.2275 -117.2275

Latitude 33.1333 33.1333 33.1333 331333183 33.1333 33.1333

Altitude 163.3 m N/A 166.6 117240 N/A 166.6

Time 02:57:00 N/A 269962 269962 N/A 269962

Table 5-37. RSU Traffic Signal Message GPS Data Elements

Data
Element

Length
(bits)

IP Data Frame
Byte #

IP Data Frame
Bits

Value (Hex)

Longitude 32 38-41 All 0xBA2081BD

Latitude 32 42-45 All 0x13BFBE3F

46-47 All 0x1C9F Altitude 20

48 1-4 0x8

2 5-8 0x4 # of
seconds in
week

40

3-4 All 0x2383

5.4.2 Vehicle Bus Interface Tests
The tests in this section will verify low, mid and high values for all vehicle speed, yaw
rate, lateral and longitudinal acceleration, throttle position, and steering wheel angle. The
remaining discrete field values will also be verified.

1. Set up a RSU configuration as described in Section 5.2.2.3, without connecting
the GPS receiver. Execute the RSU initialization procedure in Table 5-2 without
launching the Ethereal or TrafSigSim applications.

2. Set up an OBU configuration as described in Section 5.2.2.2 (without the GPS
receiver connected) and execute the OBU initialization procedure in Table 5-1.

5.4.2.1 Vehicle Bus Interface Low-Value Tests

1. Start an Ethereal session on the OBU HD to log Ethernet activity between the
HD and the WRM.

2. Use the VBusSim to set the Vehicle Velocity settings as indicated in
Table 5-38 and use PCAN to verify the Vehicle Velocity settings.
Table 5-39 and use PCAN to verify the Vehicle Acceleration settings.

3. Use VBusSim to set the Vehicle Devices settings as indicated in Table 5-40
and use PCAN to verify the Vehicle Devices settings.

Appendix F 5-31

4. On the T9App main screen for both RSU and OBU, select start testing. Allow
the test to run for a minimum of 10 seconds and then stop testing.

5. Stop recording Ethernet activity on Ethereal.

6. Review the T9App GUI on both the OBU and RSU to verify the displayed
values match the expected GUI values in Table 5-41 and record the results.

7. Open the T9App log file on the OBU HD and verify the logged values in the
OBUTX entries match the expected OBU log values in Table 5-41. Verify the
vehicle speed is also logged in the RSURX entries as the receiver information.
Record the results.

8. Use Ethereal (on the OBU HD) to view the IP data fields indicated in
Table 5-42 and record the values in Table 5-41. Verify the Ethereal values
match the expected values in Table 5-41.

9. Open the T9App log file on the RSU HD and verify the logged values in the
OBURX entries match the expected RSU log values in Table 5-41. Record the
results.

Table 5-38. Vehicle Velocity Settings (Low-Value)

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Vehicle Speed 0 1 0 1 0 1

Yaw Rate -179.999 1 0xB9B1 1 0xB9B1 1

Table 5-39. Vehicle Acceleration Settings (Low-Value)

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Lateral Acceleration -2.05 1 0xF7FE 1 0xF7FE 1

Longitudinal Acceleration -2.05 1 0xF7FE 1 0xF7FE 1

Appendix F 5-32

Table 5-40. Vehicle Devices Settings (Low-Value)

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Throttle Position 0 1 0 1 0 1

Brake Applied Status 0 1 0 1 0 1

Brake Applied Pressure 0 1 0 1 0 1

Steering Wheel Angle -179.98 1 0xB9B2 1 0xB9B2 1

Headlights 0 1 0 1 0 1

Turn Signal/Hazard Signal 0 1 0 1 0 1

Traction Control State 0 1 0 1 0 1

Anti-Lock Brake State 0 1 0 1 0 1

System Health 0 1 0 1 0 1

Table 5-41. Vehicle Interface Low-Value Test Results

 Expected Results Actual Results

Parameter

GUI Log Ethereal OBU
GUI

OBU
Log Ethereal RSU

GUI
RSU
Log

Vehicle Speed 0 m/s 0 0 0 0 0 0

Yaw Rate N/A -179.99 0xB9B1 N/A -179.99 0xb9b1 N/A

-
179.9
9

Lateral Acceleration N/A -2.05 0xF33 N/A -2.04 0xF34 N/A -2.04

Longitudinal Acceleration N/A -2.05 0xF33 N/A -2.04 0xF34 N/A -2.04

Throttle Position N/A 0 0 N/A 0 0 N/A 0

Brake Applied Status N/A 0 0 N/A 0 0 N/A 0

Brake Applied Pressure N/A 0 0 N/A 0 0 N/A 0

Steering Wheel Angle N/A -179.98 0xDCD9 N/A -179.98 0xdcd9 N/A

-
179.9
8

Headlights N/A 0 0 N/A 0 0 N/A 0

Turn Signal/Hazard Signal N/A 0 0 N/A 0 0 N/A 0

Traction Control State N/A 0 0 N/A 0 0 N/A 0

Anti-Lock Brake State N/A 0 0 N/A 0 0 N/A 0

System Health N/A 0 0 N/A 0 0 N/A 0

Appendix F 5-33

Table 5-42. OBU V2V Safety Message Vehicle Data Elements

Data Element
Length
(bits)

IP Data Frame
Byte #

IP Data Frame
Bits

56 1-8 Vehicle Speed 16

57 1-8

58 1-8 Lateral Acceleration 12

59 1-4

59 5-8 Longitudinal Acceleration 12

60 1-8

Yaw Rate 16 61-62 All

Throttle Position 8 63 1-8

Brake Applied Status 4 64 5-8

Brake Applied Pressure 4 64 1-4

Steering Wheel Angle 16 65-66 All

Headlights 2 67 7-8

Turn Signal/Hazard Signal 2 67 5-6

Traction Control State 2 67 3-4

Anti-lock Brake State 2 67 1-2

System Health 4 68 1-4

5.4.2.2 Vehicle Bus Interface Mid-Value Tests

1. Repeat steps 1-6 of section 5.4.2.1, using the Vehicle Velocity settings in
Table 5-43, the Vehicle Acceleration settings in Table 5-44, and the Vehicle
Devices settings in Table 5-45.

2. Repeat steps 7-10 of section 5.4.2.1, verifying the values and recording the
results in Table 5-46.

Appendix F 5-34

Table 5-43. Vehicle Velocity Settings (Mid-Value)

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Vehicle Speed 2.55 1 0x00FF 1 0x00FF 1

Yaw Rate 2.55 1 0x00FF 1 0x00FF 1

Table 5-44. Vehicle Acceleration Settings (Mid-Value)

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Lateral Acceleration 0 1 0x0000 1 0x0000 1

Longitudinal Acceleration 0 1 0x0000 1 0x0000 1

Table 5-45. Vehicle Devices Settings (Mid-Value)

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Throttle Position 7.5 1 0x0F 1 0x0F 1

Brake Applied Status 1 1 0x1 1 0x1 1

Brake Applied Pressure 7 1 0x7 1 0x7 1

Steering Wheel Angle 0 1 0x0000 1 0x0000 1

Headlights 1 1 0x1 1 0x1 1

Turn Signal/Hazard Signal 1 1 0x1 1 0x1 1

Traction Control State 1 1 0x1 1 0x1 1

Anti-Lock Brake State 1 1 0x1 1 0x1 1

Appendix F 5-35

Table 5-46. Vehicle Interface Mid-Value Test Results

 Expected Results Actual Results

Parameter G
U

I

Lo
g

Et
he

re
al

Tx
 G

U
I

Tx
 L

og

Et
he

re
al

R
x

G
U

I

R
x

Lo
g

Vehicle Speed 2.55 m/s 255 0x00FF 2.55 2.55 00FF 2.55 2.55

Yaw Rate 2.55 m/s 255 0x00FF N/A 2.55 00FF N/A 2.55

Lateral Acceleration N/A 0 0x000 N/A 0 000 N/A 0

Longitudinal Acceleration N/A 0 0x000 N/A 0 000 N/A 0

Throttle Position N/A 7.5 0x0F N/A 7.5 0F N/A 7.5

Brake Applied Status N/A 1 0x1 N/A 1 1 N/A 1

Brake Applied Pressure N/A 7 0x7 N/A 7 7 N/A 7

Steering Wheel Angle N/A 0 0x0000 N/A 0 0000 N/A 0

Headlights N/A 1 0x1 N/A 1 1 N/A 1

Turn Signal/Hazard Signal N/A 1 0x1 N/A 1 1 N/A 1

Traction Control State N/A 1 0x1 N/A 1 1 N/A 1

Anti-Lock Brake State N/A 1 0x1 N/A 1 1 N/A 1

5.4.2.3 Vehicle Bus Interface High-Value Tests

1. Repeat steps 1-6 of section 5.4.2.1, using the Vehicle Velocity settings in
Table 5-47, the Vehicle Acceleration settings in Table 5-48, and the Vehicle
Devices settings in Table 5-49.

2. Repeat steps 7-10 of section 5.4.2.1, verifying the values and recording the
results in Table 5-50.

Table 5-47. Vehicle Velocity Settings (High-Value)

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Vehicle Speed 655.35 1 0xFFFF 1 0xFFFF 1

Yaw Rate 179.99 1 0x464F 1 0x464F 1

Appendix F 5-36

Table 5-48. Vehicle Acceleration Settings (High-Value)

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Lateral Acceleration 2.04 1 0x07F8 1 0x07F8 1

Longitudinal Acceleration 2.04 1 0x07F8 1 0x07F8 1

Table 5-49. Vehicle Devices Settings (High-Value)

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Throttle Position 100 1 0xC8 1 0xC8 1

Brake Applied Status 2 1 0x2 1 0x2 1

Brake Applied Pressure 15 1 0xF 1 0xF 1

Steering Wheel Angle 179.98 1 0x464E 1 0x464E 1

Headlights 2 1 0x2 1 0x2 1

Turn Signal/Hazard Signal 2 1 0x2 1 0x2 1

Traction Control State 2 1 0x2 1 0x2 1

Anti-Lock Brake State 2 1 0x2 1 0x2 1

Table 5-50. Vehicle Interface High-Value Test Results

 Expected Results Actual Results

Parameter G
U

I

Lo
g

Et
he

re
al

Tx
 G

U
I

Tx
 L

og

Et
he

re
al

R
x

G
U

I

R
x

Lo
g

Vehicle Speed 655.35 m/s 655.35 0xFFFF 655.35 655.35 0xFFFF 655.35 655.35

Yaw Rate N/A 179.99 0x464F N/A 179.99 0x464F N/A 179.99

Lateral Acceleration N/A 2.047 0x0CC N/A 2.04 0x0CC N/A 2.04

Longitudinal Acceleration N/A 2.047 0x0CC N/A 2.04 0x0CC N/A 2.04

Throttle Position N/A 100 0xC8 N/A 100 0xC8 N/A 100

Brake Applied Status N/A 2 0x2 N/A 2 0x2 N/A 2

Brake Applied Pressure N/A 15 0xF N/A 15 0xF N/A 15

Appendix F 5-37

 Expected Results Actual Results

Parameter G
U

I

Lo
g

Et
he

re
al

Tx
 G

U
I

Tx
 L

og

Et
he

re
al

R
x

G
U

I

R
x

Lo
g

Steering Wheel Angle N/A 179.98 0x2327 N/A 179.98
0x232
7 N/A 179.98

Headlights N/A 2 0x2 N/A 2 0x2 N/A 2

Turn Signal/Hazard Signal N/A 2 0x2 N/A 2 0x2 N/A 2

Traction Control State N/A 2 0x2 N/A 2 0x2 N/A 2

Anti-Lock Brake State N/A 2 0x2 N/A 2 0x2 N/A 2

5.4.2.4 Vehicle Bus Interface Discrete-Value Tests

1. Repeat steps 1, 2, 5, & 6 of section 5.4.2.1, using the Vehicle Devices settings
in Table 5-51.

2. Repeat steps 7-10 of section 5.4.2.1, verifying the values and recording the
results in Table 5-52.

Table 5-51. Vehicle Devices Settings

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Brake Applied Status 4 1 0x4 1 0x4 1

Headlights 3 1 0x3 1 0x3 1

Turn Signal/Hazard Signal 3 1 0x3 1 0x3 1

Traction Control State 3 1 0x3 1 0x3 1

Anti-Lock Brake State 3 1 0x3 1 0x3 1

Table 5-52. Vehicle Interface Test Results

 Expected Results Actual Results

Parameter Log Ethereal Tx Log Ethereal Rx Log

Brake Applied Status 4 0x4 4 0x4 4

Headlights 3 0x3 3 0x3 3

Turn Signal/Hazard Signal 3 0x3 3 0x3 3

Traction Control State 3 0x3 3 0x3 3

Anti-Lock Brake State 3 0x3 3 0x3 3

Appendix F 5-38

3. Repeat steps 1, 2, 5, & 6 of section 5.4.2.1, using the Vehicle Devices setting
in Table 5-53.

4. Repeat steps 7-10 of section 5.4.2.1, verifying the values and recording the
results in Table 5-54.

Table 5-53. Vehicle Devices Settings

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Brake Applied Status 8 1 0x8 1 0x8 1

Table 5-54. Vehicle Interface Test Results

 Expected Results Actual Results

Parameter Log Ethereal Tx Log Ethereal Rx Log

Brake Applied Status 8 0x8 8 0x8 8

5. Repeat steps 1, 2, 5, and 6 of section 5.4.2.1, using the Vehicle Devices
setting in Table 5-55.

6. Repeat steps 7-10 of section 5.4.2.1, verifying the values and recording the
results in Table 5-56.

Table 5-55. Vehicle Devices Settings

 PCAN Results

 Expected Actual

Parameter

Setting
Availability
Indicator Setting

Availability
Indicator Setting

Availability
Indicator

Brake Applied Status 15 1 0xF 1 0xF 1

Table 5-56. Vehicle Interface Test Results

 Expected Results Actual Results

Parameter Log Ethereal Tx Log Ethereal Rx Log

Brake Applied Status 15 0xF F 0xF F

Appendix F 5-39

5.4.3 Traffic Signal Interface Tests

5.4.3.1 Initialization/Polling Test

1. Set up a RSU configuration as described in Section 5.2.2.3 and execute the
RSU initialization procedure in Table 5-2.

Fast Polling Test

1. On the T9App Comm Parameters screen, set the traffic signal polling interval
to 100 milliseconds.

2. On the T9App main screen, select start testing.

3. On the TrafSigSim screen, verify it receives the 22 byte initialization
sequence:
04 41 30 31 05 10 02 55 25 01 01 10 03 17 51 04 61 30 31 05 10 30

4. Verify the TrafSigSim responds with 10 30 10 31 followed by the specified
amount of other data.

5. Verify the TrafSigSim receives nothing for at least a full second.

6. Verify the TrafSigSim receives a periodic polling query of: 04 61 30 31 05 10
30, and responds with a traffic signal message (contents to be verified in other
tests).

7. Stop the test on the T9App.

Table 5-57. Traffic Signal Long Initial Response, Fast Polling Results

 TrafSigSim Results

Parameter Expected Actual

Initialization Sequence See step 3. Passed. Received expected results

Initialization Response See step 4.

(83 bytes of other data may
follow.)

Passed. TrafSigSim responded with
10 30 10 31. No additional data
followed the initialization response.

Delay between receiving initialization
and polling sequence

> 1 second.
Passed. Delay ~= 1 second

Polling query See step 6. Passed. Received periodic query

Polling interval ~100 milliseconds Passed. Polling rate is ~100 ms.

Slow Polling Test

1. On the T9App Comm Parameters screen, set the traffic signal polling interval
to 1000 milliseconds.

2. Repeat steps 2-7 of Section 5.4.3.1 and record the results in Table 5-58.

3. Reset the T9App traffic signal polling interval to 100 milliseconds.

Appendix F 5-40

Table 5-58. Short Initial Response, Slow Polling Results

 TrafSigSim Results

Parameter Expected Actual

Initialization Sequence See Section 5.4.3.1, step 3. Passed.

Initialization Response See Section 5.4.3.1, step 4
followed by 0 bytes of other data.

Passed. TrafSigSim responded
with 10 30 10 31. No additional
data followed the initialization
response.

Delay between receiving initialization
and polling sequence

> 1 second.
Passed. Delay ~= 1 second

Polling query See Section 5.4.3.1, step 6. Passed. Received periodic query

Polling interval ~1000 milliseconds Passed. Polling rate is ~1000 ms

5.4.3.2 Traffic Signal Message Processing

1. Set up a RSU configuration as described in Section 5.2.2.3 (without the GPS
receiver connected) and execute the RSU initialization procedure in Table 5-2.

2. Set up an OBU configuration as described in Section 5.2.2.2 and execute the
OBU initialization procedure in Table 5-1.

Traffic Signal Message, Active Phase 1 and 5

1. Configure the TrafSigSim parameters and verify the results as shown in

Table 5-59.

2. Start an Ethereal session to log Ethernet activity between the HD and the
WRM on the RSU HD.

3. On the T9App main screen for both the RSU and OBU, select start testing.

4. Allow the test to run for a minimum of 5 seconds, and then stop testing on
both the RSU and OBU.

5. Stop recording Ethernet activity on Ethereal.

6. Open the T9App log file on the RSU (Tx) and OBU (Rx) side. Verify the
logged values match the Log values in Table 5-60 and record the results.

7. Use Ethereal (on the RSU HD) to view the RSU Traffic Signal Message IP
data fields listed in Table 5-61 and record the values in Table 5-60. Verify the
Ethereal values match the expected values in Table 5-60.

Appendix F 5-41

Table 5-59. Traffic Signal Active Phase 1 and 5 Parameters

 TrafSig Results

 Expected Actual

Parameter Setting Byte Value Byte Value

State of active phase on ring 1 Green 5 0x00 5 0x00

State of active phase on ring 2 Green 25 0x00 25 0x00

Active Phases 1, 5 44 0x11 44 0x11

Seconds left in the currently active phase of ring 1 1 12 0x01 12 0x01

Seconds left in the currently active phase of ring 2 1 32 0x01 32 0x01

Table 5-60. Traffic Signal Active Phase 1 and 5 Results

 Expected Results Actual Results

Parameter Log Ethereal Tx Log Ethereal Rx Log

Current State of Traffic Light at
Stop Loc 1 (Phase 1) 0 0x00 0

Byte 67=
0x00 0

Time Left in Current State at Stop
Loc 1 1.000 0x03E8 1

Byte 68/69 =
0x03e8 1

Current State of Traffic Light at
Stop Loc 2 (Phase 3) 3 0x03 3

Byte 85 =
0x03 3

Time Left in Current State at Stop
Loc 2 0 0x0000 0

Byte 86/87 =
0x0000 0

Current State of Traffic Light at
Stop Loc 3 (Phase 6) 3 0x03 3

Byte 103 =
0x03 3

Time Left in Current State at Stop
Loc 3 0 0x0000 0

Byte 104/105
= 0x0000 0

Current State of Traffic Light at
Stop Loc 4 (Phase 8) 3 0x03 3

Byte 121 =
0x03 3

Time Left in Current State at Stop
Loc 4 0 0x0000 0

Byte 122/123
= 0x0000 0

Table 5-61. RSU Traffic Signal Message Data Elements

Data Element
Length
(bits)

IP Data Frame
Byte #

IP Data Frame
Bits

Current State of Traffic Light at Stop Loc 1 8 67 All

Time Left in Current State at Stop Loc 1 16 68-69 All

Current State of Traffic Light at Stop Loc 2 8 85 All

Time Left in Current State at Stop Loc 2 16 86-87 All

Current State of Traffic Light at Stop Loc 3 8 103 All

Appendix F 5-42

Data Element
Length
(bits)

IP Data Frame
Byte #

IP Data Frame
Bits

Time Left in Current State at Stop Loc 3 16 104-105 All

Current State of Traffic Light at Stop Loc 4 8 121 All

Time Left in Current State at Stop Loc 4 16 122-123 All

Traffic Signal Message, Active Phase 2 and 6

1. Repeat step 1 of Section 5.4.3.2, using the Traffic Signal settings in Table
5-62.

2. Repeat steps 2-7 of Section 5.4.3.2, verifying the values and recording the
results in Table 5-63.

Table 5-62. Traffic Signal Active Phase 2 and 6 Parameters

 TrafSig Results

 Expected Actual

Parameter Setting Byte Value Byte Value

State of active phase on ring 1 Yellow 5 0x02 5 0x02

State of active phase on ring 2 Yellow 25 0x02 25 0x02

Active Phases 2, 6 44 0x22 44 0x22

Seconds left in the currently active phase of ring 1. 20 12 0x14 12 0x14

Seconds left in the currently active phase of ring 2. 20 32 0x14 32 0x14

Table 5-63. Traffic Signal Active Phase 2 and 6 Results

 Expected Results Actual Results

Parameter Log Ethereal Tx Log Ethereal Rx Log

Current State of Traffic Light at
Stop Loc 1 (Phase 1) 3 0x03 3

Byte 67=
0x03 3

Time Left in Current State at Stop
Loc 1 0 0x0000 0

Byte 68/69
= 0x0000 0

Current State of Traffic Light at
Stop Loc 2 (Phase 3) 3 0x03 3

Byte 85 =
0x03 3

Time Left in Current State at Stop
Loc 2 0 0x0000 0

Byte 86/87
= 0x0000 0

Current State of Traffic Light at
Stop Loc 3 (Phase 6) 2 0x02 2

Byte 103 =
0x02 2

Time Left in Current State at Stop
Loc 3 20.000 0x4E20 20

Byte
104/105 =
0x4E20 20

Appendix F 5-43

 Expected Results Actual Results

Parameter Log Ethereal Tx Log Ethereal Rx Log

Current State of Traffic Light at
Stop Loc 4 (Phase 8) 3 0x03 3

Byte 121 =
0x03 3

Time Left in Current State at Stop
Loc 4 0 0x0000 0

Byte
122/123 =
0x0000 0

Traffic Signal Message, Active Phase 3 and 7

1. Repeat step 1 of Section 5.4.3.2, using the Traffic Signal settings in Table
5-64.

2. Repeat steps 2-7 of Section 5.4.3.2, verifying the values and recording the
results in Table 5-65.

Table 5-64. Traffic Signal Active Phase 3 and 7 Parameters

 TrafSig Results

 Expected Actual

Parameter Setting Byte Value Byte Value

State of active phase on ring 1 Green 5 0x00 5 0x00

State of active phase on ring 2 Green 25 0x00 25 0x00

Active Phases 3, 7 44 0x44 44 0x44

Seconds left in the currently active phase of ring 1. 40 12 0x28 12 0x28

Seconds left in the currently active phase of ring 2. 40 32 0x28 32 0x22

Table 5-65. Traffic Signal Active Phase 3 and 7 Results

 Expected Results Actual Results

Parameter Log Ethereal Tx Log Ethereal Rx Log

Current State of Traffic Light at Stop
Loc 1 (Phase 1) 3 0x03 3

Byte 67=
0x03 3

Time Left in Current State at Stop
Loc 1 0 0x0000 0

Byte 68/69
= 0x0000 0

Current State of Traffic Light at Stop
Loc 2 (Phase 3) 0 0x00 0

Byte 85 =
0x00 0

Time Left in Current State at Stop
Loc 2 40.000 0x9C40 40

Byte 86/87
= 0x9C40 40

Current State of Traffic Light at Stop
Loc 3 (Phase 6) 3 0x03 3

Byte 103 =
0x03 3

Time Left in Current State at Stop
Loc 3 0 0x0000 0

Byte
104/105 =
0x0000 0

Appendix F 5-44

 Expected Results Actual Results

Parameter Log Ethereal Tx Log Ethereal Rx Log

Current State of Traffic Light at Stop
Loc 4 (Phase 8) 3 0x03 3

Byte 121 =
0x03 3

Time Left in Current State at Stop
Loc 4 0 0x0000 0

Byte
122/123 =
0x0000 0

Traffic Signal Message, Active Phase 4 and 8

1. Repeat step 1 of Section 5.4.3.2, using the Traffic Signal settings in Table
5-66.

2. Repeat steps 2-7 of Section 5.4.3.2, verifying the values and recording the
results in Table 5-67.

Table 5-66. Traffic Signal Active Phase 4 and 8 Parameters

 TrafSig Results

 Expected Actual

Parameter Setting Byte Value Byte Value

State of active phase on ring 1 Yellow 5 0x02 5 0x02

State of active phase on ring 2 Yellow 25 0x02 25 0x02

Active Phases 4,8 44 0x88 44 0x88

Seconds left in the currently active phase of ring 1. 65 12 0x41 12 0x41

Seconds left in the currently active phase of ring 2. 65 32 0x41 32 0x41

Table 5-67. Traffic Signal Active Phase 4 and 8 Results

 Expected Results Actual Results

Parameter Log Ethereal Tx Log Ethereal Rx Log

Current State of Traffic Light at Stop
Loc 1 (Phase 1) 3 0x03 3

Byte 67=
0x03 3

Time Left in Current State at Stop
Loc 1 0 0x0000 0

Byte 68/69
= 0x0000 0

Current State of Traffic Light at Stop
Loc 2 (Phase 3) 3 0x03 3

Byte 85 =
0x03 3

Time Left in Current State at Stop
Loc 2 0 0x0000 0

Byte 86/87
= 0x0000 0

Current State of Traffic Light at Stop
Loc 3 (Phase 6) 3 0x03 3

Byte 103 =
0x03 3

Time Left in Current State at Stop
Loc 3 0 0x0000 0

Byte
104/105 =
0x0000 0

Appendix F 5-45

 Expected Results Actual Results

Parameter Log Ethereal Tx Log Ethereal Rx Log

Current State of Traffic Light at Stop
Loc 4 (Phase 8) 65.000 0x00 2

Byte 121 =
0x02 2

Time Left in Current State at Stop
Loc 4 0 0x0FDE8 65

Byte
122/123 =
0xFDE8 65

5.5 Requirement/Test Cross Reference Matrix

5.5.1 Task 9 Software Requirement Verification
These are a summary of requirements gleaned from Chapter 2.

 Table 5-68. Task 9 Software Requirement Cross Reference

Section
Number

Requirement Test
Procedure

3 The Task 9 software shall have the capability to run one application at a time
with the Task 9 device being configurable to easily choose amongst a set of
preloaded applications. The On-board Unit (OBU) Test application will be used
in a vehicle and will wirelessly broadcast vehicle parameters and decode
incoming packets containing surrounding vehicle parameters. The Roadside
Unit (RSU) Test application will be used near a roadway infrastructure device
such as a traffic signal and will broadcast traffic signal information.

All tests,
by
inspection.

3.1 OBU Application Requirements

3.1.1 In the OBU Test application, the Task 9 device shall use a Controller Area
Network (CAN) bus to receive messages with vehicle information such as
vehicle speed, brake position, acceleration, etc.

5.4.2

3.1.2 The OBU Test application shall periodically issue commands to the WRM to
transmit the latest GPS and vehicle information wirelessly.

5.4.1.2

3.1.2 The periodicity of the transmitted information shall be adjustable through the
control user interface and shall allow periods at least as small as 10
milliseconds.

5.3.2

3.2 RSU Application Requirements

3.2.1 The RSU Test application shall decode traffic signal information from an RS-
232 connection.

5.4.3

3.2.2 The RSU Test application shall periodically issue commands to the WRM to
transmit traffic signal information wirelessly.

5.3.2

3.2.2 The periodicity of the transmitted information shall be adjustable through the
control user interface and shall allow periods at least as small as 10
milliseconds.

5.3.2

3.2.3.1 The RSU Test application shall be configurable so that the user has the
capability to modify constant parameters for the traffic signal information.

5.3.4

Appendix F 5-46

Section
Number

Requirement Test
Procedure

3.3 OBU and RSU Test Common Requirements

3.3.1 In the OBU Test application, the Task 9 device shall use an RS-232 port to
receive ASCII messages formatted in the National Maritime Electronics
Association (NMEA) 0183 standard. The application shall parse these
messages to get the GPS data required in other parts of this document.

5.4.1.2

In addition to the data content sent from the OBU Test and RSU Test
applications, each data packet shall also contain the following:

(N/A)

Sender ID (either preset OR randomized at start of test) 5.3.2

Common Message ID (to be defined by VSCC members) 5.3.1

Message Count (incrementing short unsigned integer) 5.3.3

Broadcast Power 5.3.1

Operating System Time (nanoseconds) 5.3.1

State of Data Logging (i.e., logging active, logging inactive) 5.3.3

Latitude, Longitude, Height (ellipsoidal) 5.4.1.1

GPS Seconds in Week (conversion from UTC time to GPS Seconds in
Week)(set GPS Seconds in Week to zero for devices with no GPS receiver
attached)

5.4.1.1

3.3.3

Heading (from GPS receiver) 5.4.1.1

3.3.4 By default, the Task 9 device shall record all data sent and all data received
from surrounding devices via the WRM.

5.3, 5.4

In addition, the Task 9 device shall record reception parameters, timing, and
statistics associated with each data packet. The recorded reception
parameters include:

(N/A)

Receiver Signal Strength Indicator (RSSI) 5.3.1

Distance to Sender (using valid GPS coordinates of sender and receiver) 5.3.5.1

Heading to Sender (using valid GPS coordinates of sender and receiver) 5.3.5.3

Current GPS Seconds in Week of receiver 5.4.1

Latitude, Longitude, Height (ellipsoidal) of receiver 5.4.1

Heading (from GPS receiver) 5.4.1

3.3.4

Speed (meters/second, via CAN from host vehicle if receiver) 5.4.2

3.3.4 All parameters controllable from the control user interface shall be recorded. 5.3.6

3.3.5.1 The applications shall retain the value of all parameters controllable from the
control user interface during a “normal” power cycle.

5.3.6

3.3.5.1 The control user interface shall allow the user to configure the applications to
transmit wirelessly through the WRM upon application execution. This implies
the application will also be decoding CAN and/or serial data as appropriate for
the application.

5.3, 5.4

3.3.5.1 The control user interface shall allow the user to adjust all WRM
communication parameters described in the WRM interface specification.

Tested in
Task 6D

3.3.5.1 The control user interface shall display the IP address of the Task 9 device at
the Ethernet port connected to the WRM.

5.3.2

Appendix F 5-47

Section
Number

Requirement Test
Procedure

3.3.5.1 The OBU Test and RSU Test applications shall each provide a display for
configuring the communication parameters. The display shall allow the user to
adjust the following communication parameters inherent to the application:

Periodicity of message transmission

Size of message being transmitted (append data to standard message using
same message ID)

Destination IP address (as a default, this should be the broadcast IP address)

5.3.2

3.3.5.1 The OBU Test and RSU Test applications shall have the ability to initiate,
suspend, or terminate a test. The test shall consist of the OBU Test or RSU
Test applications transmitting and recording data as described in previous
sections.

5.3.2

3.3.5.1 The length of the test shall be controllable via the control user interface. The
user shall be able to control the length of the test by specifying the number of
packets sent or the number of seconds of test time. During a test, the Task 9
device shall record data as outlined in sections above.

5.3.3

3.3.5.1 The OBU Test and RSU Test applications shall have the ability to specify a
filename for recorded test data. The format for the filename shall be <Test
Name>_<Test Run>_<GPS Date> where:

<Test Name> is a field entered by the user

<Test Run> is an automatically incrementing number incremented after a test
has ended (i.e., terminated by the user, maximum number off packet sent, test
time exceeded)

<GPS Date> is derived from the local GPS information.

5.3.3

3.3.5.1 The OBU Test and RSU Test applications shall each have an active visual
display that shows other Task 9 devices that have communicated with the host
Task 9 device. The display shall support at least 10 other Task 9 devices and
update the information displayed at least once per second. The text on the
display should be easily readable in a vehicular environment.

5.3.5

For each device, the following shall be displayed: (N/A)

Sender ID 5.3.2

State of Data Logging (Requirement deleted during Denso/VSCC Telecon) N/A

Most recent Message Count 5.3.3

Distance to Sender 5.3.5.1

Relative Heading to Sender = Heading to Sender (from GPS differencing) –
Heading (only to be calculated when host vehicle speed > 5 m/s)

5.3.5.3

RSSI 5.3.1

3.3.5.1

Speed 5.4.2

Appendix F 5-48

5.5.2 Common Message Header Verification

Table 5-69. Common Message Header Field Verification

Field Name Verification Test

Packet Length 5.3.2

GPS Seconds in Week 5.4.1.1

GPS Longitude 5.4.1.1

GPS Latitude 5.4.1.1

GPS Altitude 5.4.1.1

GPS Heading 5.4.1.1

Sender ID 5.3.2

Message Count 5.3.2

Log 5.3.2

Tx Power 5.3.1

OS Time 5.3.1

5.5.3 OBU Message Verification

Table 5-70. OBU Message Verification

Field Name Verification Test

Message Type 5.3.1

Temporary ID 5.3.1

Precision Indicator N/A

Longitude of center of vehicle 5.4.1.2

Latitude of center of vehicle 5.4.1.2

Altitude of center of vehicle 5.4.1.2

UTC Time 5.4.1.2

Heading 5.4.1.2

Vehicle Speed 5.4.2

Lateral Acceleration 5.4.2

Longitudinal Acceleration 5.4.2

Yaw Rate 5.4.2

Throttle Position 5.4.2

Brake Applied Status 5.4.2

Brake Applied Pressure 5.4.2

Steering Wheel Angle 5.4.2

Appendix F 5-49

Field Name Verification Test

Headlights 5.4.2

Turn Signal/Hazard Signal 5.4.2

Traction Control State 5.4.2

Anti-Lock Brake State 5.4.2

Vehicle Length N/A

Vehicle Width N/A

5.5.4 RSU Message Verification

Table 5-71. RSU Message Verification

Field Name Verification Test

Message ID 5.3.1

Temporary ID 5.3.1

Precision Indicator N/A

Longitude of RSU GPS Antenna 5.3.4, 0

Latitude of RSU GPS Antenna 5.3.4, 0

Altitude of RSU GPS Antenna 5.3.4, 0

UTC Time 5.4.1.3

Longitude of Stopping Location # 1 5.3.4

Latitude of Stopping Location # 1 5.3.4

Altitude of Stopping Location # 1 5.3.4

Directionality of Stopping Location # 1 5.3.4

Current State of Traffic Light at Stopping Location # 1 5.4.3.2

Time Left in Current State of Traffic Light at Stopping Location # 1 5.4.3.2

Duration of Yellow State at Stopping Location # 1 5.3.4

Longitude of Stopping Location # 2 5.3.4

Latitude of Stopping Location # 2 5.3.4

Altitude of Stopping Location # 2 5.3.4

Directionality of Stopping Location # 2 5.3.4

Current State of Traffic Light at Stopping Location # 2 5.4.3.2

Time Left in Current State of Traffic Light at Stopping Location # 2 5.4.3.2

Duration of Yellow State at Stopping Location # 2 5.3.4

Longitude of Stopping Location # 3 5.3.4

Latitude of Stopping Location # 3 5.3.4

Altitude of Stopping Location # 3 5.3.4

Directionality of Stopping Location # 3 5.3.4

Appendix F 5-50

Field Name Verification Test

Current State of Traffic Light at Stopping Location # 3 5.4.3.2

Time Left in Current State of Traffic Light at Stopping Location # 3 5.4.3.2

Duration of Yellow State at Stopping Location # 3 5.3.4

Longitude of Stopping Location # 4 5.3.4

Latitude of Stopping Location # 4 5.3.4

Altitude of Stopping Location # 4 5.3.4

Directionality of Stopping Location # 4 5.3.4

Current State of Traffic Light at Stopping Location # 4 5.4.3.2

Time Left in Current State of Traffic Light at Stopping Location # 4 5.4.3.2

Duration of Yellow State at Stopping Location # 4 5.3.4

Appendix F 6-1

6 Appendix

6.1 Terms, Acronyms, and Abbreviations

Acronym Definition

API Application Programming Interface

ATP Acceptance Test Plan

CAN Controller Area Network

Comm Communication

CTS Clear to Send

DB Decibel

DBi Decibel Isotropic

DBm Decibel Milliwatts

DBm Decibel Milliwatts

Deg Degrees

deg/sec Degrees per Second

DGPS Differential GPS

DLL Dynamic Link Library

GPGGA Global Positioning System Fix Data

GPRMC Global Positioning Recommended Minimum Specific GPS/Transit Data

GPS Global Positioning System

GPVTG Global Positioning Track Made Good and Ground Speed

GPZDA Global Positioning UTC Date / Time and Local Time Zone Offset

GUI Graphical User Interface

HD Host Device

I/F Interface

IP Internet Protocol

Kbps Kilobits per Second

Lsb Least Significant Bit

LSB Least Significant Byte

LSBit Least Significant Bit

LSByte Least Significant Byte

LSNybble Least Significant Nybble

M Meters

Appendix F 6-2

Acronym Definition

m/s Meters per Second

MAC Medium Access Control

Mbps Megabits per Second

MFC Microsoft Foundation Class

MHz Megahertz

Ms Milliseconds

MSB Most Significant Byte

MSByte Most Significant Byte

Msec Milliseconds

N/A Not Applicable

NMEA National Maritime Electronics Association

OBU On Board Unit

OBURX On Board Unit Receive Log Entry

OBUTX On Board Unit Transmit Log Entry

OS Operating System

PCAN Peak System Controller Area Network Software

PCAP Packet Capture

RSSI Received Signal Strength Indicator

RSU Road Side Unit

RSURX Road Side Unit Receive Log Entry

RTS Request to Send

Rx Receive

RXUTX Road Side Unit Transmit Log Entry

SAE Society of Automotive Engineers

Sec Seconds

STD Standard

Stop Loc Stopping Location

T9App Task 9 Application

TCP Transport Control Protocol

TrafSigSim Traffic Signal Simulator

Tx Transmit

UML Unified Modeling Language

USB Universal Serial Bus

UTC Coordinated Universal Time

UTC Universal Coordinated Time

Appendix F 6-3

Acronym Definition

V2V Vehicle to Vehicle

VBusSim Vehicle Bus Simulator

VSC Vehicle Safety Communications

VSCC Vehicle Safety Communications Consortium

WAVE Wireless Access in Vehicular Environments

WRM WAVE Radio Module

6.2 References
[1] NMEA 0183 Interface Standard, dated January 2002.

[2] Chapter 5, Vehicle Safety Communications Project, Task 6D: WAVE Radio
Module, Final Task Report, September 27, 2004.

6.3 Task 9 device CAN input messages
This appendix outlines the CAN messages that the OBU Test application shall decode.

Parameters for the physical setup and messages will be:

• ISO 11898 Physical Layer

• 500 kilobits/second

• Standard 11-bit message IDs (not extended 29-bit)

• All signed values are twos-complement unless otherwise noted.

6.3.1 Vehicle Velocity Message
Message ID: 300 (hexadecimal)

Data Bytes: 8

 Bit

Byte
8 7 6 5 4 3 2 1(lsb)

1 Vehicle Speed MSByte

2 Vehicle Speed LSByte (LSBit = 0.01 m/s; unsigned)

3 Yaw Rate MSByte

4 Yaw Rate LSByte (LSBit = 0.01 deg/sec; signed)

5 Unused Signal Availability
Indicator (See Below)

Appendix F 6-4

Byte 5:

Depending on Vehicle/Application some signals might not be available. A '1' indicates
the signal is available and valid. A '0' indicates the signal is unavailable or otherwise
invalid.

Bit Signal

1 Vehicle Speed

2 Yaw Rate

6.3.2 Vehicle Acceleration Message
Message ID: 301 (hexadecimal)

Data Bytes: 8

 Bit

Byte
8 7 6 5 4 3 2 1(lsb)

1 Lateral Acceleration MSByte

2 Lateral Acceleration LSByte (LSBit = 0.001 m/s; signed)

3 Longitudinal Acceleration MSByte

4 Longitudinal Acceleration LSByte (LSBit = 0.001 m/s; signed)

5 Unused Signal Availability
Indicator (See Below)

Byte 5:

Depending on Vehicle/Application some signals might not be available. A '1' indicates
the signal is available and valid. A '0' indicates the signal is unavailable or otherwise
invalid.

Bit Signal

1 Lateral Acceleration

2 Longitudinal Acceleration

Appendix F 6-5

6.3.3 Vehicle Devices Message
Message ID: 302 (hexadecimal)

Data Bytes: 7

Byte 7:

Depending on Vehicle/Application some signals might not be available. A '1' indicates
the signal is available and valid. A '0' indicates the signal is unavailable or otherwise
invalid.

Bit Signal

1 Throttle Position

2 Brake Applied Status

3 Steering Wheel Angle

4 Anti-Lock Brake State

5 Traction Control State

6 Turn Signal/Hazard Signal

7 Headlights

8 System Health

6.4 Traffic Signal Interface
This appendix specifies the format of the RS-232 messages that need to be exchanged in
order to get traffic signal information into the Task 9 device.

Parameters for the physical setup and messages will be:

• 19,200 Baud

• 8 data bits

• No parity bit

• 1 stop bit

 Bit

Byte
8 7 6 5 4 3 2 1(lsb)

1 Throttle Position (LSBit = 0.5% open; unsigned)

2 Brake Applied Status Brake Applied Pressure

3 Steering Wheel Angle MSByte

4 Steering Wheel Angle LSByte (LSBit = 0.01 degrees; signed)

5 Headlights (Meaning
TBD)

Turn Signal/Hazard
Signal (Meaning TBD)

Traction Control State
(Meaning TBD)

Anti-Lock Brake State
(Meaning TBD)

6 Unused System Health (Meaning TBD)

7 Signal Availability Indicator (See Below)

Appendix F 6-6

The communication between the Task 9 device and the traffic signal device shall consist
of a series of requests and responses. The Task 9 device shall make requests and the
traffic signal device will respond with data. There are two types of request/response pairs:
initial and periodic.

6.4.1 Initial Request/Response State
The Task 9 device shall prepare the traffic signal controller for the periodic state by first
transmitting the following sequence of 22 bytes (all bytes specified in hexadecimal
format):
 04 41 30 31 05 10 02 55 25 01 01 10 03 17 51 04
 61 30 31 05 10 30

The Task 9 device shall then expect these four bytes to be transmitted from the traffic
signal controller as a response:
 10 30 10 31

There may also be an 83 byte data message following this response. These 83 bytes shall
be ignored and discarded.

The Task 9 device shall then wait a full second before advancing to the periodic state.

6.4.2 Periodic Request/Response State
After leaving the "Initial State" the Task 9 device shall stay in the "Periodic State" for the
duration of the program. The "Periodic State" shall consist of the Task 9 device
repeatedly transmitting a request to the traffic signal device and the Task 9 device
validating and parsing each response.

The Task 9 device shall execute the request by transmitting the following sequence of 7
bytes (all bytes specified in hexadecimal format) with a user-selectable period between
100 and 1000 milliseconds (with 100 milliseconds being the default):
 04 61 30 31 05 10 30

Appendix F 6-7

The Task 9 device shall then expect the traffic signal controller to respond with a
message that is at least 83 bytes long (with a maximum length of 100 bytes). Before
validating and parsing the message it shall be searched for occurrences of the byte 0x10
in consecutive positions in the message. For every sequence of 0x10's one of them shall
be extracted and discarded from the message. For example, if the received bytes were:
 10 02 25 01 00 0B 1B 2A 2E 30 00 10 10 FF FF FF
 FF FF FF FF FF 00 10 10 00 02 00 0B 1B 2A 2E 30
 00 1A FF FF FF FF FF FF FF FF 00 1A 00 44 00 00
 00 00 00 00 00 BB 00 00 00 00 00 00 00 00 00 00
 00 44 00 00 FF 00 00 00 00 00 7F FF 00 00 00 00
 10 03 2F 51 04

They would become this:
 10 02 25 01 00 0B 1B 2A 2E 30 00 10 FF FF FF FF
 FF FF FF FF 00 10 00 02 00 0B 1B 2A 2E 30 00 1A
 FF FF FF FF FF FF FF FF 00 1A 00 44 00 00 00 00
 00 00 00 BB 00 00 00 00 00 00 00 00 00 00 00 44
 00 00 FF 00 00 00 00 00 7F FF 00 00 00 00 10 03
 2F 51 04

after the "stuffed 0x10's" extraction.

Once this extraction has been performed the message shall be considered valid if it meets
the following criteria:

1. It is exactly 83 bytes long.

2. It begins with the bytes 0x10 and 0x02 in that order.

3. It ends with the byte 0x04.

Once a message is determined to be valid then data shall be parsed from it. The following
table shows the relevant bytes and their meanings:

Appendix F 6-8

Byte
Number

Meaning

1 Header byte - constant 0x10

2 Header byte - constant 0x02

5

The current state of the active phase on ring 1:

0x00 = Green

0x02 = Yellow

0x03 = Red

25

The current state of the active phase on ring 2:

0x00 = Green

0x02 = Yellow

0x03 = Red

44

Active phases – one bit for each phase (1 – active, 0 – not active). Example:

0001 0001 – phases 1 and 5 are active

0010 0100 – phases 3 and 6 are active

46 Next active phases (format the same as "active phases").

12 Seconds left in the current state of the currently active phase of ring 1.

32 Seconds left in the current state of the currently active phase of ring 2.

83 End-of-message byte – constant 0x04

A phase can be thought of as a single flow of traffic through an intersection. An active
phase is one that potentially has a non-red light. Any phase that is not active has a red
light. The eight phases are divided into two groups of four phases called rings. Phases 1-
4 make up ring 1 and phases 5-8 make up ring 2. Only 1 phase on each ring can be active
simultaneously.

Appendix F 6-9

6.5 Preliminary Vehicle-to-Vehicle Common Message Set
 Bit

Byte

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42

Longitudinal Acceleration MSNybble Lateral Acceleration LSNybble (LSBit = 0.01 m/s2; signed)

4 3 2 1(lsb)8 7 6 5
Message Type (See Below)

Temporary ID MSByte
Temporary ID...
Temporary ID...
Temporary ID...
Temporary ID...

Temporary ID LSByte
Precision Indicator (Meaning TBD)

Heading (LSBit = 0.01 degrees; signed; 0 degrees = North)

Longitude of center of vehicle MSByte
"
"

 Longitude LSByte (LSBit = 10-7 decimal degrees; signed)
Latitude of center of vehicle MSByte

"
"

 Latitude LSByte (LSBit = 10-7 decimal degrees; signed)

Turn Signal/Hazard
Signal (See Below)

Altitude of center of vehicle MSByte

Anti-Lock Brake State
(See Below)

Throttle Position (LSBit = 0.5% open; unsigned)

Altitude (LSBit = 1 cm; unsigned; offset by +1 km)

UTC Time MSByte

UTC Time LSByte (LSBit = 0.001 seconds)

Unused Altitude LSNybble

Brake Applied Status (See Below)

Number of milliseconds since Jan. 1, 2004 at 00:00:00

Vehicle Width LSByte (LSBit = 1 centimeter)

Yaw Rate MSByte
Yaw Rate LSByte (LSBit = 0.01 deg/sec; signed)

Steering Wheel Angle MSByte
Steering Wheel Angle LSByte (LSBit = 0.02 degrees; signed)

Unused System Health (See Below)

Headlights (See Below)

Brake Applied Pressure (See Below)

Traction Control State
(See Below)

Heading MSByte

Vehicle Width (Upper 2 bits) Vehicle Length (Lower 6 bits; LSBit = 1 cm; unsigned)

Vehicle Speed MSByte
Vehicle Speed LSByte (LSBit = 0.01 m/s; unsigned)

Lateral Acceleration MSByte

Vehicle Length MSByte

Longitudinal Acceleration LSByte (LSBit = 0.01 m/s2; signed)

Appendix F 6-10

NOTE: this represents the data format for the message set as delivered to the applications

MSByte - Most Significant Byte (8 bits)
LSByte - Least Significant Byte (8 bits)
LSNybble - Least Significant Nybble (4 bits)

All signed values are twos complement unless otherwise noted.

Message Type (From byte 1) Headlights (From byte 38)

0 Vehicle-to-Vehicle Message Version 1.0 00 Off
1 - 255 Undefined 01 Daytime Running Lights

10 On
11 Brights

Brake Applied Status (From byte 35) Turn Signal/Hazard Signal (From byte 38)

0000 All Off 00 Off
XXX1 Left Front 01 Left Turn Signal
XX1X Left Rear 10 Right Turn Signal
X1XX Right Front 11 Hazard Signal
1XXX Right Rear
1111 All On

Traction Control State (From byte 38)

Brake Applied Pressure (From byte 35) 00 Not equipped
01 Off

0000 Not equipped 10 On
0001 Minimum braking pressure 11 Engaged
0010 …
1111 Maximum braking pressure Anti-Lock Brake State (From byte 38)

00 Not equipped
01 Off
10 On
11 Engaged

System Health (From byte 39)

0000 No faults detected
0001 Specific error codes

… "
1111 "

Appendix F 6-11

6.6 Task 9 Application Users’ Guide

6.6.1 Introduction
This section provides the User’s Guide for the Wireless Access in Vehicular
Environments (WAVE) application delivered in accordance with the requirements in
Chapter 2.

6.6.2 Scope
This User’s Guide describes the setup, operating instructions, and troubleshooting
procedures for the Task 9 Application (T9App). The T9App may be configured to
operate in an OBU or RSU mode to support testing of vehicle safety scenarios.

6.6.3 Setup Procedures

6.6.3.1 Common Setup

This section describes the setup procedures that apply to both the OBU and RSU.
It describes the WRM Setup, Host Device (HD) Configuration, Software
Installation, and differential GPS (DGPS) setup. Figure 6-1 illustrates the
configuration.

HD with
T9App

Power
Supply

Antenna 2 Antenna 1

WRM

Ethernet
Crossover Cable

DGPS

Comm Port

RS-232 I/F

Figure 6-1. Common Setup

6.6.3.2 WRM Setup

Connect the HD to the WRM using one of the following methods:

• Use an Ethernet crossover cable to connect the HD Ethernet port
directly to the WRM Ethernet port. If the HD is running Windows
2000 or Windows XP, a standard Ethernet cable may be used.

Appendix F 6-12

• Use standard Ethernet cables to connect the HD and WRM through a
hub or Ethernet switch.

Supply power to the WRM using either the wall power supply (120V/5V AC-DC
converter) or the vehicle power supply (12V/5V DC-DC converter with cigarette
lighter adapter). For subsequent test setups, the crossover cable is not labeled, and
the power supply is not shown for simplicity.

6.6.3.3 Host Device Configuration

Configure the HD IP address to an address of the format 192.168.001.xxx with
Subnet Mask of 255.255.255.000. For communication to succeed, the HD IP
address must be different from the WRM IP address (which is labeled on the
WRM when it is delivered, and should not be changed by the user).

Each WRM has a unique IP address of the format 192.168.001.0xx, where xx is
the DENSO assigned unit number. Each HD IP address needs to be unique as
well. DENSO recommends adding 100 to the last set of digits in the WRM IP
address to get the HD IP address. For example, if the WRM IP address is
192.168.001.013 then set the Host IP address to 192.168.001.113.
Windows IP Configuration Example

If the HD is a PC running the Windows XP operating system, use the following
procedure to configure the HD IP address.

• From the Host PC’s Start menu, choose Control Panel and then
Network Connections.

• Right click on the Local Area Connection icon that belongs to the
Ethernet controller connected to the WRM and select Properties.

• Within the Local Area Connection Properties dialog box, choose
Internet Protocol (TCP/IP) and click Properties.

• Click the radio button corresponding to "Use the following IP address".

• Configure the Host IP address to (192.168.001.xxx) for the Ethernet
connection in the Internet Protocol (TCP/IP) Properties dialog box. For
example, if the WRM IP address is 192.168.001.013 then set the Host
IP address to 192.168.001.113.

• Set the subnet mask to 255.255.255.0.

• Accept the settings and close the Internet Protocol Properties dialog
box.

• The HD is now configured to communicate with the WRM.

6.6.3.4 Software Installation

Run the WAVETestInstall.exe program to install the T9App software. On the
Customer Information screen, enter your User Name and Company Name. The
installation places the program executable and dynamic link library files in the

Appendix F 6-13

appropriate directory (C:\Program Files\DENSO\WAVE Test\WAVE Test vx.x).
The installation also places a WAVE Test vx.x (i.e., T9App) shortcut on your
computer’s Desktop. Double-clicking this icon will start the program. The
program can also be started from the Windows Start button by selecting Programs
and then WAVE Test vx.x.

The T9App program utilizes the Windows packet capture (PCAP) libraries, which
must be installed separately. If the PCAP software was installed previously (e.g.,
as part of the API Tester installation), it does not need to be reinstalled. DENSO
will supply the PCAP installation executable as part of the T9App delivery. It is
also available from http://winpcap.polito.it.

6.6.3.5 GPS Setup

Connect a HD comm port to the DGPS using a standard serial cable (by default,
the T9App uses comm port 1). Configure the comm port settings to the settings
being used by the DGPS using the T9App Comm Parameters screen (see
Section 6.6.4.4). The default T9App and CSI Wireless DGPS settings are 9600
baud, no parity bit, 8 data bits, and 1 stop bit. For the RSU, use of the DGPS is
optional.

On some computers running Windows XP, the OS mistakenly interprets the
DGPS as a serial track ball and loss of mouse control results. If this occurs, use
the OS to disable the bogus track ball. From the Start menu, select Control Panel,
and then System. Select the Hardware tab and then Device Manager. Right click
on the device and disable it.

6.6.3.6 OBU Setup

Figure 6-2 illustrates the OBU setup. For the vehicle bus interface, install the
Controller Area Network (CAN) bus drivers from the disk or CD supplied by
Grid Connect (see www.gridconnect.com for additional information). Install a
Grid Connect adapter into a HD USB port. VSCC must supply the cable to
connect the adapter to the vehicle bus.

HD with
T9App

WRM

Antenna 1Antenna 2
DGPS

Vehicle Bus
Interface

USB w/CAN
Adapter

Comm Port

CAN Bus I/F

RS-232 I/F

Figure 6-2. OBU Setup

http://www.gridconnect.com/

Appendix F 6-14

6.6.3.7 RSU Setup

Figure 6-3 illustrates the RSU setup. Connect a HD comm port to the traffic
signal controller using a standard serial cable (by default, the T9App uses comm
port 2). Use the T9App Comm Parameters Screen (see Section 6.6.4.4) to
configure the comm port settings. The default T9App settings are 19,200 baud, no
parity bit, 8 data bits, and 1 stop bit.

HD with
T9App

WRM

Antenna 1Antenna 2
DGPS

Traffic Signal
Controller

RS-232 I/F

RS-232 I/F

Comm Port

Comm Port

Figure 6-3. RSU Setup

6.6.4 Operating Instructions

6.6.4.1 Overview

The T9App provides the following functionality:

• User configuration of test parameters

• WRM configuration

• Transmission and reception of messages formatted in accordance with
the Task 9 Application Message Specification defined in Section 6.5.

• Real-time display of WAVE network status

• Logging of configuration parameters and message traffic

• Operation in OBU or RSU mode

• Interface to DGPS receiver and CAN vehicle bus for OBU operation

• Interface to DGPS receiver and traffic signal controller for RSU
operation

6.6.4.2 Main Screen

Figure 6-4 shows the T9App Main Screen Layout. It enables the user to access
four screens (i.e., WRM Configuration, Comm Parameters, Test Options, and

Appendix F 6-15

Traffic Signal Information) to set up the test configuration. After setup, press the
"Start Testing" button to begin test execution.

Figure 6-4. T9App Main Screen Layout

6.6.4.3 WRM Configuration Screen

The WRM Configuration Screen enables the user to configure the WRM
parameters or reset the WRM configuration to the default settings. Figure 6-5
shows the WRM Configuration Screen layout. Refer to the WRM Interface
Specification 0 for a detailed description of the parameter options and their
default values. The unit mode setting specifies whether the T9App and WRM
operate in RSU or OBU mode. The T9App limits the available options for Tx
power to settings that are valid for the current channel, unit mode, and antenna
compensation factor. Refer to the WRM Interface Specification for a description
of the valid power settings. After selecting the desired settings, press the OK
button to configure the WRM and exit the screen, or Cancel to leave the WRM
configuration unchanged. Use the Get Current Configuration button to refresh the
screen with the current WRM settings.

Figure 6-5. WRM Configuration Screen Layout

Appendix F 6-16

6.6.4.4 Comm Parameters Screen

The Comm Parameters Screen enables the user to configure communication
parameters for over the air message transmission and device interfaces. Figure 6-6
shows the Comm Parameters Screen layout and Table 6-1. Comm Parameters
Screen Field Definitions provides the field definitions.

Figure 6-6. Comm Parameters Screen Layout

Table 6-1. Comm Parameters Screen Field Definitions

Group Field Description

Local HD IP Address See Section 6.6.3.3 for instructions on how to set the
Host Device IP Address using OS capabilities.

Sender ID Set to the ID to be sent in the common message
header.

Destination HD IP
Address

Set to 255.255.255.255 for broadcast IP addressing, or
to the destination HD IP address for unicast IP
addressing.

N/A

Destination WRM
MAC Address

Set to all FFs for broadcast MAC addressing, or to the
destination WRM MAC address for unicast IP addressing.
Note that OBUs automatically regenerate a new random MAC
address whenever they are reset or power cycled.

Appendix F 6-17

Group Field Description

Tx Message Interval Set to the transmit interval for the OBU V2V Safety
Message or the RSU Traffic Signal Message.

Tx Message Size. Set to the desired message size. The T9App adds fill bytes to
the end of the message if needed to reach the specified size.
The T9App ignores this parameter if it is less than the size of
the OBU or RSU message.

Enabled Check the box if a GPS receiver is attached.

Baud Rate Set the baud rate to match the GPS Receiver
configuration.

GPS Setup

Com Port Set to the port on which the GPS Receiver is attached.

Enabled Check the box if a Traffic Signal Controller device is
attached.

Baud Rate Set the baud rate to match the Traffic Signal Controller
configuration.

Traffic Signal
Setup

Com Port Set to the port on which the Traffic Signal Controller is
attached.

Enabled Check the box if a CAN bus is attached.

Baud Rate Set the baud rate to match the CAN bus configuration.

CAN Setup

Init Type Set to standard (STD).

6.6.4.5 Test Options Screen

The Test Options Screen enables the user to configure the test duration and
logging. Figure 6-7 shows the Test Options Screen layout and Table 6-2 provides
the field definitions.

Appendix F 6-18

Figure 6-7. Test Options Screen Layout

Table 6-2. Test Option Screen Field Definitions

Group Field Description

Run for n sent
messages

Check the radio button and enter the total number of
messages to be sent during the test.

Run for n seconds Check the radio button and enter the number of
seconds the test should run.

Test Control

Passive mode Check the radio button to run in passive mode. The
T9App will not transmit any messages, but will display
and log received messages. After starting the test, the
test will continue to run until the user presses the Quit
button.

Log this Test Check the box to generate a logfile for the test. Uncheck
the box if no logfile is required.

Logging

Test Name Enter the test name for the logfile. Browse to the desired
directory by pressing the "…" button. The T9App will
generate a logfile at the specified location with the name
[Test Name]_[Test Run]_mmddyyyy.txt. The T9App will
set the Test Run number to 1 for the first test of the day
for this test name and location and automatically
increment it for all subsequent tests.

6.6.4.6 Traffic Signal Information Screen

The Traffic Signal Information Screen enables the user to configure the static
traffic signal information. Figure 6-8 shows the Traffic Signal Information screen
layout and Figure 6-9 shows the Location Information dialog box that is displayed
when any of the Location buttons are pushed. If the RSU has a GPS receiver
attached, the RSU will use the GPS information as the intersection location rather
than the user entered values. Table 6-3 provides the field definitions.

Appendix F 6-19

Figure 6-8. Traffic Signal Information Screen Layout

Figure 6-9. Location Information Screen Dialog Box

Table 6-3. Traffic Signal Information Screen Field Definitions

Group Field Description

Intersection Number of Lanes Set to the number of lanes in the intersection.

Yellow light duration Set to the duration of the yellow light. Stopping
locations 1-4 Signal phase number Set to a number in the range of 1 to 8. Each stopping

location should have a different signal phase number.

Appendix F 6-20

Group Field Description

Latitude Set to the latitude of the intersection or stopping
location. Enter northern latitudes as positive numbers
and southern latitudes as negative numbers.

Longitude Set to the longitude of the intersection or stopping
location. Enter northern longitudes as positive numbers
and southern longitudes as negative numbers..

Altitude Set to the altitude (height above ellipsoid).

Location
Information
Dialog Box

Direction Set to the direction. 0 represents north. Enter eastern
directions as positive numbers and western directions
as negative numbers.

6.6.4.7 Test Display Screen

The Test Display Screen provides a real time display of the WAVE network
status. The Test Display screen also enables the user to pause and resume a test,
or to quit a test. Figure 6-10 shows the Test Display Screen layout and Table 6-4
provides the field definitions.

Figure 6-10. Test Display Screen Layout

Appendix F 6-21

Table 6-4. Test Display Screen Field Definitions

Group Field Description

Sender ID Displays the sender ID of the OBU.

Msg Count Displays the number of messages received from the
OBU since the beginning of the test.

Distance Displays the distance to the OBU.

Rel Heading Displays the relative heading to the OBU (i.e., bearing
from the local OBU to the remote OBU minus the
remote OBU's heading) if the local unit is an OBU.
Displays the remote OBU's heading if the local unit is
an RSU.

RSSI Displays the received signal strength of the last
message received from the OBU.

OBU

Speed Displays the speed of the OBU obtained from the CAN
bus.

Sender ID Displays the sender ID of the RSU.

Msg Count Displays the number of messages received from the
RSU since the beginning of the test.

Distance Displays the distance to the RSU.

Bearing Displays the bearing to the RSU.

RSSI Displays the received signal strength of the last
message received from the RSU. The T9App
automatically adjusts the RSSI by a known offset prior
to display or logging, based on the WRM IP address.
DENSO measured this offset prior to shipment. If the IP
address is changed, an incorrect offset or no offset may
be applied.

Latitude Displays the latitude of the RSU.

RSU

Longitude Displays the longitude of the RSU.

Pause Button Pauses the current testing. The T9App stops the screen
updates log generation, and changes the button label to
"Resume".

Resume Button Resumes a paused test. The T9App resumes the
screen updates and log generation, and changes the
button label to "Pause".

Control

Quit Button Quits the current test. The T9App stops the screen updates,
closes the logfile, and exits to the main screen. The logfile
contains the log entries generated up to the time the test was
stopped.

Appendix F 6-22

Group Field Description

Log File ID Displays the current test ID that will be used in the log
file name. The T9App sets this number to 1 for the first
logged run of the day and automatically increments it
during the day. The T9App resets the test number to 1 if
the test name or log directory is changed on the Test
Options Screen (see Section 6.6.4.5). TheT9App does
not increment the test number for tests that are not
logged.

Messages Sent Displays the number of messages sent since the
beginning of the test. If the Test Control selection on the
Test Options Screen (see Section 6.6.4.5) is "Run for n
sent messages", the T9App displays Messages Sent as
"x of n".

Status

Seconds Elapsed Displays the elapsed time since the beginning of the
test. This does not include any time during which the
test was paused. If the Test Control selection on the
Test Options Screen (see Section 6.6.4.5) is "Run for n
seconds", the T9App displays Seconds Elapsed as "x of
n".

Sender ID Displays the Sender ID of the local unit.

Latitude Displays the latitude of the local unit.

Longitude Displays the longitude of the local unit.

Local

Speed Displays the speed of the local unit obtained from the
CAN bus (applicable for OBUs only).

6.6.4.8 Logfile Usage
Logfile Contents

If the user requests logging on the Test Options Screen (see Section 6.6.4.5), the
T9App generates a logfile with configuration information and entries for each
message sent and received. Table 6-5. Logfile Record Types describes each of the
log record types, and indicates whether or not they appear in an OBU or RSU log.

Table 6-5. Logfile Record Types

Record Type Contents OBU Log RSU Log

CONFIG Records the configuration data entered by the
user on the T9App GUI.

√ √

OBUTX Records data sent over the air by the local
unit when the unit is operating in OBU mode.

√

OBURX Records data received from a remote OBU. √ √

RSUTX Records data sent over the air by the local
unit when the unit is operating in RSU mode.

 √

RSURX Records data received from a remote RSU. √ √

Appendix F 6-23

The T9App writes a heading record before the first record of each type. The
heading record contains the names of all of the fields for the record type. The
T9App writes a CONFIG record at the beginning of the test. When operating as
an OBU, it writes an OBUTX record whenever it transmits a message. When
operating as a RSU, it writes a RSUTX record whenever it transmits a message.
All units log all received messages as OBURX or RSURX records, depending on
the type of the sending unit.

Figure 6-11 shows the contents of a sample OBU logfile. The first two rows are a
CONFIG heading record followed by a CONFIG data record. The third row is an
OBUTX heading record, followed by seven OBUTX data records. Next is an
RSURX heading record followed by two RSURX data records.

Figure 6-11. Sample OBU Logfile

6.6.4.9 Importing a Logfile into Excel

One method of converting the logfile into a more easily readable format is to
import it into Excel. The procedure for this is as follows:

1. Open Excel.

2. Use the open file command and select the desired logfile. Excel will display
the Text Import Wizard, step 1 of 3. Leave the default settings, select Next
and step 2 of 3 will be displayed.

3. On step 2, check the box to indicate comma is a delimiter and then select
Finish. See Figure 6-12.

Appendix F 6-24

Figure 6-12. Excel Text Import Wizard

4. Excel will now display the logfile in a worksheet. Push the select all button
(above the "1" and to the left of "A"). Excel will highlight all of the cells as
shown in Figure 6-13.

Figure 6-13. Worksheet Selection

Appendix F 6-25

5. From the menu, select Format, Column, AutoFit Selection. The logfile will
now be displayed in a more easily read format. See Figure 6-14.

Figure 6-14. Imported Logfile

6.6.5 Troubleshooting
This chapter describes the error messages generated by the T9App and how to resolve
them.

6.6.5.1 WRM Communication

The T9App attempts to retrieve the current WRM configuration upon startup. If it
is successful, it displays the message "WRM Config loaded OK" at the bottom of
the main screen. If it is unable to retrieve the configuration, it displays the
message "Unable to init WRM API". If this message appears, check the
following.

1. Verify the HD and WRM Ethernet interfaces are connected with the correct
cabling.

2. Verify the WRM is powered on.

3. Verify the WRM is in WAVE mode. Use a Telnet command to change the
mode from 802.11a to WAVE if necessary.

Appendix F 6-26

6.6.5.2 GPS and Traffic Signal Communication

The GPS and Traffic Signal serial port configurations are set using the Comm
Parameters Screen (see Section 6.6.4.4). If both are enabled, they must use
different COM ports. If the same port is selected for both devices, the T9App
displays the message box shown in Figure 6-16 when the user attempts to exit the
screen. To eliminate the error, select different COM ports for each device, or
disable the setup for one of the devices.

Figure 6-15. COM Port Conflict Error Message

6.6.5.3 GPS Communication

The T9App attempts to initialize the selected GPS serial port at the beginning of
each test when GPS setup is enabled on the Comm Parameters screen. If it is
unable to initialize the port, it displays the message box shown in Figure 6-16.

Figure 6-16. GPS Port Initialization Error Message

If this message box appears, check the following.

1. Verify the selected COM port exists on the host device (check the number of
ports available using the OS).

2. Verify the GPS is connected to the selected port.

3. Verify no other application is using the COM port (e.g., Hyperterm).

4. Reboot the machine if the above steps do not resolve the issue. The COM port
may be hung from use by a previous application.

If the T9App does not appear to be receiving GPS data, verify the serial port
settings on the GPS receiver match the T9App settings.

6.6.5.4 Traffic Signal Communication

The T9App attempts to initialize the selected Traffic Signal port at the beginning
of each test when operating in RSU mode and Traffic Signal setup is enabled on

Appendix F 6-27

the Comm Parameters Screen. If it is unable to initialize the port, it displays the
message box shown in Figure 6-17.

Figure 6-17. Traffic Signal Port Initialization Error Message

If this message box appears, check the following.

1. Verify the selected COM port exists on the host device (check the number of
ports available using the OS).

2. Verify the Traffic Signal is connected to the selected port.

3. Verify no other application is using the COM port (e.g., HyperTerminal).

4. Reboot the machine if the above steps do not resolve the issue. The COM port
may be hung from use by a previous application.

If the T9App does not appear to be receiving Traffic Signal data, verify the serial
port settings on the Traffic Signal controller match the T9App settings.

6.6.5.5 CAN Bus Communication

The T9App attempts to initialize the CAN bus when operating in OBU mode and
CAN setup is enabled on the Comm Parameters Screen. If it is unable to initialize
the bus, it displays the message box shown in Figure 6-18. Select OK to continue
the test without using the CAN interface. This is equivalent to unchecking the
CAN setup box on the Comm Parameters Screen (see Section 6.6.4.4) Select
Cancel to return to the main screen without executing the test.

Figure 6-18. CAN Bus Initialization Error Message Box

If this message box appears and the CAN bus should be operational, check the
following.

1. Verify the Grid Connect CAN bus drivers are installed on the host device.

2. Verify the CAN bus settings for baud rate and init type on the Comm
Parameters Screen are valid for the current setup.

3. Verify the Grid Connect USB adapter is plugged into the host device.

Appendix F 6-28

4. Verify the cable is connected between the Grid Connect adapter and the
vehicle.

5. Verify no other CAN application is running on the same machine (e.g., Grid
Connect's PCAN View)

	1 Background
	2 Preliminary Requirements
	2.1 Introduction
	2.2 Development Requirements
	2.3 Applications
	2.3.1 On-Board Unit (OBU) Test Application
	2.3.1.1 OEM Vehicle Interface
	2.3.1.2 Wireless Data Output
	2.3.1.3 Roadside Unit (RSU) Test ApplicationFigure 2
	2.3.1.4 Traffic Signal Device Interface
	2.3.1.5 Wireless Data Output
	2.3.1.6 Application Display
	Control User Interface

	2.3.2 OBU Test and RSU Test Common Requirements
	2.3.2.1 GPS Receiver Interface
	2.3.2.2 Interface to WRM
	Telnet Interface to WRM
	IP API Interface to WRM

	2.3.2.3 Wireless Data Output
	2.3.2.4 Data Logging
	2.3.2.5 Application Display
	Control User Interface
	Real-Time Interface

	3 Application Message Specification
	3.1 Introduction
	3.1.1 Scope
	3.1.2 Application Interfaces
	3.1.3 GPS Receiver Interface
	3.1.4 Vehicle Bus Interface
	3.1.5 Traffic Signal Interface
	3.1.6 WAVE Radio Module Interface

	3.2 Message Definitions
	3.2.1 Common Message Header
	3.2.2 OBU V2V Safety Message
	3.2.3 RSU Traffic Signal Message

	4 Testing System Specification and Architecture
	4.1 Introduction
	4.1.1 Scope

	4.2 Architecture
	4.2.1 Overview
	4.2.2 External Interfaces
	4.2.2.1 GPS/Traffic Signal Interface
	4.2.2.2 Vehicle Bus Interface
	4.2.2.3 WRM Interface

	4.2.3 User Interface
	4.2.3.1 Screen Shots
	4.2.3.2 T9App Dialog to Class Relationships

	4.2.4 Test Control
	4.2.4.1 Class Architecture
	4.2.4.2 Test Processing

	4.3 Class Descriptions
	4.3.1 Class Descriptions
	4.3.1.1 Class CCanControl
	4.3.1.2 Class CCanMsg
	4.3.1.3 Class CCommParams
	4.3.1.4 Class CDeviceDatabase
	4.3.1.5 Class CGpsControl
	4.3.1.6 Class CGpsPosition
	4.3.1.7 Class CLocationInfo
	4.3.1.8 Class CSerialPort
	4.3.1.9 Class CSignalControl
	Methods and Attributes
	State Machine

	4.3.1.10 Class CSignalInfo
	4.3.1.11 Class CTestLog
	4.3.1.12 Class CTestStatusDialog
	Methods
	 Processes

	4.3.1.13 Class CVehicleInfo
	4.3.1.14 Class CWaveDeviceInfo
	4.3.1.15 Class CWrmControl
	4.3.1.16 Class CWrmMsg

	4.4 Data
	4.4.1 Structures
	4.4.2 Global Variables
	4.4.2.1 T9App Globals
	4.4.2.2 WAVE API Globals
	4.4.2.3 PCAN USB Globals

	4.5 Design Goals and Constraints
	4.5.1 Design Methodology
	4.5.2 MFC, Standard Library Usage
	4.5.3 ANSI Compliance
	4.5.4 Memory Management
	4.5.5 Naming Conventions

	4.6 Modifications and Enhancements
	4.6.1 Changing Over the Air Formats
	4.6.1.1 T_TEST_HEADER
	4.6.1.2 T_COMMON_MSG_HEADER
	4.6.1.3 T_VTV_MSG
	4.6.1.4 T_TS_MSG

	4.6.2 Changing Data Logging
	4.6.3 Changing Test Types
	4.6.4 Changing T9App Configuration Loading / Saving
	4.6.5 Changing CAN messages

	5 Validation Results
	5.1 Introduction
	5.1.1 Scope

	5.2 Test Configurations
	5.2.1 WAVE Radio Module Network Connection
	5.2.2 Test Setups
	5.2.2.1 Generic Test Setup
	5.2.2.2 OBU Test Setup
	5.2.2.3 RSU Test Setup

	5.2.3 Initialization
	5.2.3.1 OBU and RSU Initialization Procedures
	5.2.3.2 Communication Parameters Initialization
	5.2.3.3 Test Options Initialization
	5.2.3.4 Traffic Signal Information Initialization

	5.2.4 Software Builds

	5.3 GUI Parameter Tests
	5.3.1 WRM Configuration Screen
	5.3.2 Comm Parameters Screen
	5.3.2.1 Comm Parameters Screen Low-Value Tests
	5.3.2.2 Comm Parameters Screen Mid-Value Tests
	5.3.2.3 Comm Parameters Screen High-Value Tests

	5.3.3 Test Options Screen
	5.3.4 Traffic Signal Information Screen
	5.3.5 Test Display Screen
	5.3.5.1 Distance Calculation, OBU Heading Test
	5.3.5.2 RSU – RSU Bearing Test
	5.3.5.3 OBU – OBU Relative Heading Test

	5.3.6 GUI Configuration Recording, Persistence

	5.4 Interface Tests
	5.4.1 GPS Receiver Interface Tests
	5.4.1.1 Common Message Header – GPS Data Tests
	5.4.1.2 OBU GPS Interface Tests
	5.4.1.3 RSU GPS Interface Tests

	5.4.2 Vehicle Bus Interface Tests
	5.4.2.1 Vehicle Bus Interface Low-Value Tests
	5.4.2.2 Vehicle Bus Interface Mid-Value Tests
	5.4.2.3 Vehicle Bus Interface High-Value Tests
	5.4.2.4 Vehicle Bus Interface Discrete-Value Tests

	5.4.3 Traffic Signal Interface Tests
	5.4.3.1 Initialization/Polling Test
	Fast Polling Test
	Slow Polling Test

	5.4.3.2 Traffic Signal Message Processing
	Traffic Signal Message, Active Phase 1 and 5
	Traffic Signal Message, Active Phase 2 and 6
	Traffic Signal Message, Active Phase 3 and 7
	Traffic Signal Message, Active Phase 4 and 8

	5.5 Requirement/Test Cross Reference Matrix
	5.5.1 Task 9 Software Requirement Verification
	5.5.2 Common Message Header Verification
	5.5.3 OBU Message Verification
	5.5.4 RSU Message Verification

	6 Appendix
	6.1 Terms, Acronyms, and Abbreviations
	6.2 References
	6.3 Task 9 device CAN input messages
	6.3.1 Vehicle Velocity Message
	6.3.2 Vehicle Acceleration Message
	6.3.3 Vehicle Devices Message

	6.4 Traffic Signal Interface
	6.4.1 Initial Request/Response State
	6.4.2 Periodic Request/Response State

	6.5 Preliminary Vehicle-to-Vehicle Common Message Set
	6.6 Task 9 Application Users’ Guide
	6.6.1 Introduction
	6.6.2 Scope
	6.6.3 Setup Procedures
	6.6.3.1 Common Setup
	6.6.3.2 WRM Setup
	6.6.3.3 Host Device Configuration
	Windows IP Configuration Example

	6.6.3.4 Software Installation
	6.6.3.5 GPS Setup
	6.6.3.6 OBU Setup
	6.6.3.7 RSU Setup

	6.6.4 Operating Instructions
	6.6.4.1 Overview
	6.6.4.2 Main Screen
	6.6.4.3 WRM Configuration Screen
	6.6.4.4 Comm Parameters Screen
	6.6.4.5 Test Options Screen
	6.6.4.6 Traffic Signal Information Screen
	6.6.4.7 Test Display Screen
	6.6.4.8 Logfile Usage
	Logfile Contents

	6.6.4.9 Importing a Logfile into Excel

	6.6.5 Troubleshooting
	6.6.5.1 WRM Communication
	6.6.5.2 GPS and Traffic Signal Communication
	6.6.5.3 GPS Communication
	6.6.5.4 Traffic Signal Communication
	6.6.5.5 CAN Bus Communication

